Multiwfn forum

Multiwfn official website: http://sobereva.com/multiwfn. Multiwfn forum in Chinese: http://bbs.keinsci.com/wfn

You are not logged in.

#1 2023-01-17 16:40:53

MatteoCapone
Member
Registered: 2023-01-17
Posts: 1

Excited states transition dipole calculation from orca output

Dear Developers,

I'm using ORCA  package to calculate the excited state (TD-DFT no TDA) properties of mono and multi chlorophylls system.
Also, I need to calculate the transition dipoles between excited states, and not only ground-excited(n) as done in ORCA.

However, I found that the transition state dipoles of the ground->excited obtained with ORCA or MultiWFN are heavily different.
I attached in at the end of the message two extract of the output.
Also, I found that using the Gaussian generated .fchk instead of the orca ones, produces more comparable results to the MultuWFN output.

What could be the reason of this? Is it possible that the cause is some problem in the orca_2mkl conversion tool? Or is it a know divergence?
In summary what is the best practice to obtain the best results using ORCA as quantum engine?

As last, I also used the same procedure (orca_2mkl conversion) to calculate the transition dipoles for a multi chlorophylls system and I found ****** at the oscillator force value. As well the excited state -> excited_state transition dipole are very large and unreliable. MultiWFN didn't had any problem reading the .molden file.
How can I understand if it is a conversion problem?

Thank you in advance!
All the best,
MC

-----------------------------------------------------------------------------
         ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-----------------------------------------------------------------------------
State   Energy    Wavelength  fosc         T2        TX        TY        TZ
        (cm-1)      (nm)                            (au**2)    (au)      (au)      (au)
-----------------------------------------------------------------------------
   1   14970.4    668.0   0.257639327   5.66572  -1.12516  -0.47628  -2.04277
   2   19574.1    510.9   0.011362767   0.19111   0.33267   0.10914  -0.26178
   3   27942.8    357.9   1.018472443  11.99926   2.66040   0.87313  -2.03941
   4   29989.6    333.4   0.160741506   1.76454  -0.16894  -0.09184   1.31437
   5   31244.9    320.1   1.056042535  11.12698   1.57985   0.60555   2.87478
   6   31854.1    313.9   0.002624584   0.02713   0.16441   0.00903   0.00375
   7   33174.2    301.4   0.012477855   0.12383  -0.32621  -0.10557   0.07919
   8   35278.6    283.5   0.181787537   1.69640  -1.13029  -0.41635   0.49548
   9   37816.8    264.4   0.033505887   0.29168   0.48442   0.13968  -0.19367
  10   38237.8    261.5   0.123809615   1.06595  -0.32769  -0.17433  -0.96342
.
.
.
-------------
DIPOLE MOMENT
-------------
                                X             Y             Z
Electronic contribution:      2.22865      -0.90930      15.27391
Nuclear contribution   :     -2.86814       1.08984     -16.36313
                        -----------------------------------------
Total Dipole Moment    :     -0.63949       0.18055      -1.08922
                        -----------------------------------------
Magnitude (a.u.)       :      1.27591
Magnitude (Debye)      :      3.24311


Part of the MultiWFN output:
Note: The transition dipole moments reported below only correspond to spatial part, the spin part is not taken into account

Ground state electric dipole moment in X,Y,Z:   -0.639490    0.180545   -1.089222 a.u.

Transition electric dipole moment between ground state (0) and excited states (a.u.)
     i     j         X             Y             Z        Diff.(eV)   Oscil.str
     0     1    -3.0313120    -1.2756039    -4.7917777     1.85600     1.53589
     0     2    -0.4904949    -0.1302379     0.6375124     2.42700     0.03948
     0     3     0.7397337     0.2509648    -0.3292072     3.46400     0.06098
     0     4    -0.7361992    -0.1922119    -0.1556767     3.71800     0.05494
     0     5    -2.6426851    -1.0931376    -3.9257143     3.87400     2.23895
     0     6     0.0451070     0.0518216    -0.0093294     3.94900     0.00047
     0     7    -0.6204076    -0.2275506     0.2536970     4.11300     0.05049
     0     8    -1.1367921    -0.4125960     0.5407664     4.37400     0.18806
     0     9    -0.3861618    -0.1635517    -0.4138854     4.68900     0.03988
     0    10    -0.1200477    -0.0824971    -0.5351213     4.74100     0.03573

Note: In below output the case of i=j corresponds to contribution of electron to dipole moment of excited state i
Transition electric dipole moment between excited states (a.u.):
     i     j         X             Y             Z        Diff.(eV)   Oscil.str
     1     1     1.3024204    -0.3997946    14.9532633     0.00000     0.00000
     1     2    -1.5051157    -0.6671176    -2.5974048     0.57100     0.13230
     1     3    -1.6533333    -0.7142723    -2.7384251     1.60800     0.42321
     1     4    -0.0956455    -0.0752028     0.3436092     1.86200     0.00606
     1     5     0.1553578    -0.4312900     9.9829821     2.01800     4.93759
     1     6     0.0220357     0.0201882     0.0687744     2.09300     0.00029
     1     7    -0.1608296    -0.0480604     0.7301023     2.25700     0.03103
     1     8    -0.7294283    -0.2865204     1.1216858     2.51800     0.11550
     1     9     0.8054130     0.3270769     1.9859989     2.83300     0.32620
     1    10     0.2863137     0.1143344     0.5115949     2.88500     0.02522

Offline

#2 2023-01-18 02:51:23

sobereva
Tian Lu (Multiwfn developer)
From: Beijing
Registered: 2017-09-11
Posts: 1,830
Website

Re: Excited states transition dipole calculation from orca output

You can find relevant description in Section 3.21.A of Multiwfn manual:

IMPORTANT NOTE: It is also possible to use ORCA TDDFT/TDHF output file, but the analysis result may be unreliable or even fully wrong!!! Because in TD task, ORCA only prints configuration contributions (which are given as sum of excitation and de-excitation contributions) but does not print configuration coefficients for excitation and de-excitation respectively. In this case, Multiwfn automatically generates configuration coefficients by calculating square root of the configuration contributions. This treatment is sometimes reasonable, however when de-excitation is significant, the configuration coefficients yielded in this manner must be nonsense; in addition, even if de-excitation is completely zero, the result may still be incorrect, because actual configuration coefficients may either be positive or negative, while the sign evidently cannot be determined from configuration contributions

There is no way to solve this problem if you insist on using TDDFT of ORCA. I hope ORCA developer will improve TDDFT output.

In contrast, Gaussian prints coefficients of excitations and de-excitation configurations separately and thus Multiwfn is able to correctly take excitations and de-excitations into account.

Offline

Board footer

Powered by FluxBB