Theoretical research of multipolymers with hydrogen bonds (I)

By I_was_a_baby

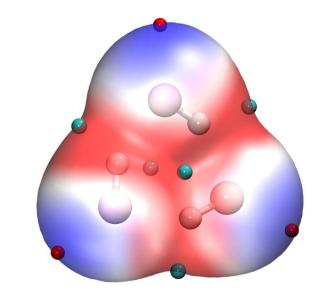
It is a kind of work about how the properties of multipolymers with hydrogen bonds changed. In this article, applying the different number of HF molecules, a series of characters of multipolymers, such as ESP, ELF, AIM, etc. have been observed. There are several results after calculations.

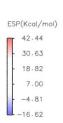
Computational details:

Geometry and frequency: M06-2X/6-311G** with "int=ultrafine" in Gaussian 09 D.01 program package Wavefunction analysis: Multiwfn 3.6 (dev) Isosurface plot: VMD 1.9.2

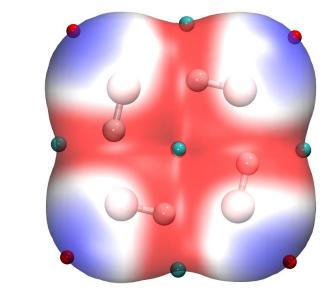
Results:

What should I say before discuss the results is that, the system with five HF molecules is unstable after geometry optimization. So, in the results display in below, the (HF)₅ has been passed.

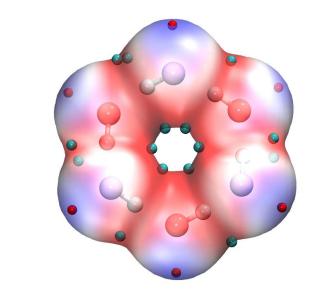

1. Average Interaction Energy


	(HF) ₃	(HF) ₄	(HF) ₆
E_int(Kcal/mol)	8.07	9.83	10.58
Symmetry	C_{3h}	C_{4h}	S_6

2. ESP: Electrostatic Potential

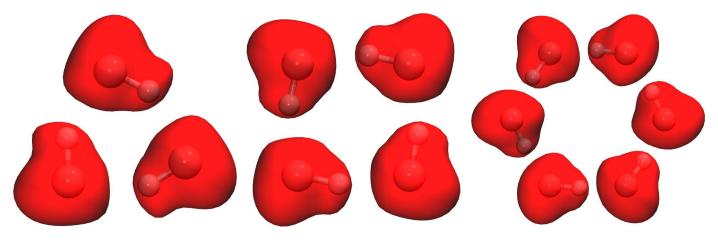

PS: a novel method of plotting ESP with .cub files can be seen in the appendix (in Chinese).

(1). ESP of (HF)₃



(2). ESP of (HF)₄

ESP(Kcol/mol) 47.57 5.05 22.52 10.00 -2.53 -15.05


(3). ESP of (HF)₆

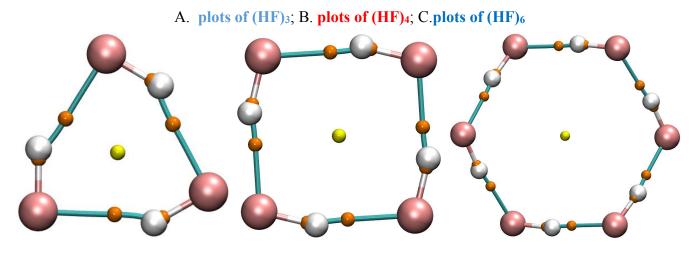
3. ELF: Electron Localization Function

ESP(Kcal/mol) 45.41 33.54 21.67 9.80 -2.07 -13.94

ELF of (HF)₃ (left), ELF of (HF)₄ (middle) and ELF of (HF)₆ (right)

4. Mayer bond order and Multicenter bond order

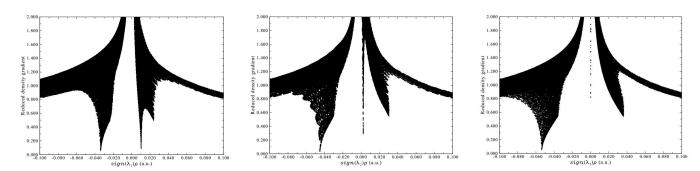
Mayer	(HF)3	(HF) ₄	(HF) ₆
H-FH	0.091	0.115	0.130
Multicenter	(HF) ₃	(HF)4	(HF) ₆
F-F-F(-F-F-F)	0.020	0.070	0.057


5. AIM topology analysis

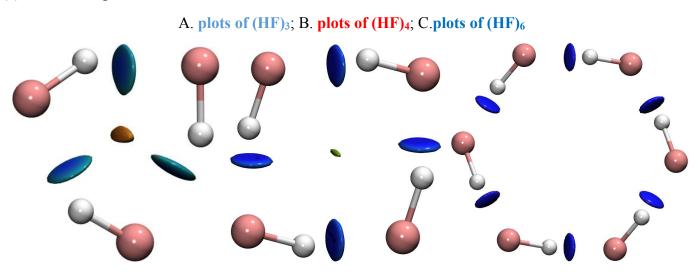
(1). Several properties of CPs are listed in the table below.

Tripolymers	(HF) ₃		(HF) ₄		(HF) ₆	
Kind of Critical Point (CP)	BCP	RCP	BCP	RCP	BCP	RCP
Lagrangian kinetic energy G(r)	3.51E-02	1.32E-02	4.79E-02	3.49E-03	5.76E-02	6.38E-05
Hamiltonian kinetic energy K(r)	3.59E-04	-2.45E-03	2.59E-03	-1.53E-03	5.37E-03	-7.28E-05
Potential energy density V(r)	-3.54E-02	-1.07E-02	-5.04E-02	-1.96E-03	-6.30E-02	8.94E-06
Energy density E(r) or H(r)	-3.59E-04	2.45E-03	-2.59E-03	1.53E-03	-5.37E-03	7.28E-05
Laplacian of electron density	1.39E-01	6.25E-02	1.81E-01	2.01E-02	2.09E-01	5.46E-04
Electron localization function (ELF)	7.80E-02	1.09E-02	1.06E-01	1.07E-03	1.27E-01	1.50E-05
Localized orbital locator (LOL)	2.25E-01	9.52E-02	2.56E-01	3.18E-02	2.76E-01	4.46E-03
Local information entropy	7.67E-03	2.72E-03	7.66E-03	5.60E-04	6.29E-03	1.44E-05
Reduced density gradient (RDG)	1.34E-16	1.48E-14	1.77E-16	1.42E-15	1.00E+02	1.61E-15
Sign(lambda2)*rho	-3.39E-02	1.02E-02	-4.52E-02	2.29E-03	-5.38E-02	6.29E-05
Average local ionization energy	7.24E-01	7.46E-01	7.48E-01	7.02E-01	7.66E-01	6.00E-01
Delta_g	7.72E-02	3.44E-02	1.01E-01	1.33E-02	1.20E-01	1.52E-03
Total ESP	2.94E-01	1.26E-01	4.00E-01	9.94E-02	4.70E-01	6.32E-02
Ellipticity of electron density	9.91E-03	-1.32E+00	3.68E-02	-1.22E+00	3.56E-02	-1.12E+00
eta index	2.18E-01	3.16E-01	2.42E-01	2.16E-01	2.58E-01	1.17E-01

*BCP = Bond Critical Point; RCP = Ring Critical Point


(2). plots of AIM topology analysis

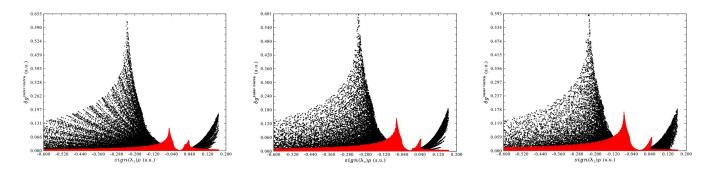
6. RDG: Reduced density gradient


(1). Scatter plots

A. plots of (HF)₃; B. plots of (HF)₄; C.plots of (HF)₆

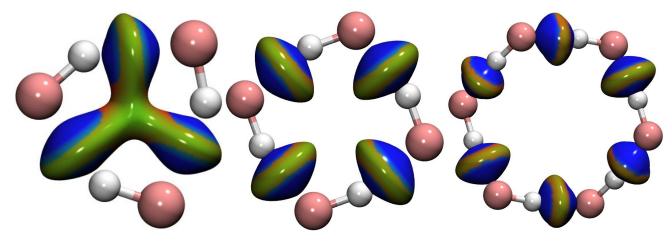
The marked scales of two cusps on the X axis are

A: -0.035(left); 0.010(right); B: -0.043(left); 0.005(right); C: -0.058(left); doesn't exist (right);



(2). Isosurface plots of RDG

7. IGM: Independent Gradient Model


(1). Scatter plots

(2). Isosurface plots of IGM

A. plots of (HF)₃; B. plots of (HF)₄; C.plots of (HF)₆

*all of isovalue of isosurfaces are 0.015.

Conclusion

According with the original idea, the weak interaction of the system increased with the arising of number of HF molecules.