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1. INTRODUCTION

Molecular dynamics is a proven and powerful tool in the exploration and

study of the structure and dynamics that define biomolecular energy
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landscapes [1–7]. Technological advances in simulation methodology

[8–14] and computer architecture [15,16] have significantly extended both

the time scale and length (size) scale of molecular dynamics trajectories

[17–22]. Reports in the literature show that the time scale of contemporary

molecular dynamics trajectories, carried out with modest computer re-

sources, have increased by roughly four orders of magnitude since the

inception of biomolecular simulation. A microsecond simulation has been

reported in 2000 [23]; however, after 5 years, this still remains the ex-

ception rather than the rule in computational studies. The length scale of

practical molecular dynamics simulations has not witnessed such a dra-

matic increase, since the urgency for larger systems is not as great as for

longer time. System sizes have increased by nearly 25 times, where sim-

ulations of 25,000 particles are not uncommon.

To put the growth of molecular dynamics simulations into perspective, a

rough analogy to Moore’s Law [24] can be created. Since the first reported

biomolecular simulation over three decades ago, the time scale of re-

ported protein simulations is found to double roughly every 2 years. In

terms of length scale, simulations have nearly doubled in size every 6

years. For example, the first molecular dynamics simulation involving bo-

vine pancreatic trypsin inhibitor (BPTI) was carried out for 9.2 picoseconds

involving approximately 1082 atoms using a united-atom force field in

vacuum [25]. In contrast, it is now fairly routine to simulate models incor-

porating explicit solvent, periodic boundary conditions, and extended

electrostatics with second generation all-atom molecular force fields for

10–100nanoseconds. As an illustration, lysozyme, a small protein of

comparable size to BPTI, has been simulated using a solvated model of

explicit waters for 28 nanoseconds involving over 13,000 atoms [26]. Ex-

amples including nucleic acid simulation show even greater growth, where

a total of 0.6microseconds of simulation for unique tetranucleotide se-

quences of DNA containing �24,000 atoms has been reported [27,28].

It is obvious that the escalation of computing power, resources, and

software development has made it easier to create significantly larger and

more complex sets of data stemming from molecular dynamics simula-

tions. However, analysis of molecular dynamics trajectories has never

been and is currently not trivial. Extracting meaningful information from

even the shortest time simulations is an artform requiring solid chemical

intuition, physical insight, and technical expertise [29,30]. The increased

complexity and size of molecular dynamics trajectories further amplifies an

already difficult situation. As such, computational chemists have been

searching for new computational tools to mine molecular dynamics data for

meaningful information connecting biological function to structure and dy-

namics. The goal of this review is to demonstrate the need for multivariate

S. A. M. Stein et al.234



analysis in biophysical studies, present how principal components analysis

(PCA) can be implemented in the analysis of molecular dynamics data, and

provide insights into the pitfalls and common errors associated with mul-

tivariate techniques.

2. MULTIVARIATE METHODS

Systematic variation of a single variable is usually desired in scientific

study; however, researchers in the biological, chemical, physical, and so-

cial sciences frequently collect measurements on several variables si-

multaneously. This is especially true for molecular dynamics simulations,

where the coordinates and momenta of all atoms are typically sampled

every few femtoseconds over millions of time steps. Within the context of

molecular dynamics simulations, the challenge is to discover the molec-

ular motion(s) responsible for the phenomena of biochemical interest

within the vast range of dynamics ‘‘noise’’ [17,18,29,30]. Some progress

has been made, where localized molecular motion has been linked to

biochemical function as a gateway in acetylcholinesterase [31–33], a

hinged-lid in triose phosphate isomerase [34–38], and combined levers

and gates in carbonmonoxy myoglobin [39]. A database of more than

120molecular motions has been reported [40].

A molecular dynamics trajectory is by definition multivariate data, where

a large number of variables (atomic positions) are typically found to be

interrelated, correlated, or dependent on each other. To decipher these

large data sets, multivariate statistical analysis is one approach that is

gaining popularity. References that present an organized overview of

multivariate methods highlighting their statistical utility and connection

between each of the techniques are available [41–43]. There are also

excellent sources on individual multivariate methods giving an in-depth

mathematical review coupled with illustrative examples and scientific

problems suited for such applications [44,45]. For our purposes, multi-

variate analysis has been applied to molecular dynamics trajectories in

two general ways:

(1) Data reduction or structural simplification. The goal is to reduce the original

large number of dependent variables (atomic coordinates) to a smaller and

independent set to explain the phenomena of interest. Data reduction

through PCA is unique when applied to molecular dynamics trajectories,

since three or less principal components, composed of linear combinations

of the original Cartesian coordinates, are typically identified to clarify im-

portant biomolecular motions.
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(2) Sorting, classification, and grouping. The goal is to group or classify objects

based upon measured characteristics. In this specific application of mul-

tivariate analysis, the dimensionality of the data set remains the same. The

data set is simply partitioned into different groups to gain a sense of order

or classification. For instance, cluster analysis has been used to identify

similar geometric or conformational features from molecular dynamics

simulations to further understand complex energy landscapes or design

new drugs in pharmaceutical drug design studies.

The method of analysis depends heavily on whether one is interested in

interrelationships or in comparisons, and on whether variables are qual-

itative or quantitative. In many situations, there will not be a single best

method of analysis. When applied to molecular dynamics trajectories, the

major classifications of multivariate analysis involve PCA [39,46–104],

factor analysis [105,106], discriminant function analysis [107], cluster

analysis [50,107–122], canonical correlation analysis [123–125], and mul-

tidimensional scaling [53,112,113,115,126–130].

A full description for each of these methods is beyond the scope of this

review and may be found in other sources [41–45]. There is some overlap

between a few of the methods where each technique is generally unique

in carrying out either reduction or grouping of multivariate data. However,

one of the most commonly applied techniques to molecular dynamics data

sets is PCA, which will be the focus of this review.

3. PRINCIPAL COMPONENTS ANALYSIS

3.1. Background

Principal components analysis (PCA) is the simplest of multivariate tech-

niques that is used to reduce or simplify large and complicated sets of

data. The PCA procedure was first introduced for only a few variables in

1901 by Karl Pearson [131]. With the advent of computers, PCA was

extended as a practical computing method by Hotelling in 1933 for a

greater number of variables [132]. Since this time, many variations have

been proposed and implemented, such as the essential dynamics method,

which has been extensively used and reported in the recent literature.

However, the underlying mathematical procedure for essential dynamics

remains the same as PCA.

The commonly stated goal of PCA is to reduce the dimensionality of a

multivariate data set by taking p interrelated variables, x1, x2,y, xp, and
finding combinations of these based upon variances to produce a
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transformed set of variables, z1, z2,y, zp, that are uncorrelated. The in-

dices zi are called the principal components (PCs). Statistically, the point

of PCA is straightforward, but this type of explanation is far from a physical

interpretation that would be meaningful to scientists employing such a

technique.

It is important first to realize that PCA is predicated on the assumption

that the phenomena of interest can be explained by the variances and

covariances between the p variables in the original data set. Unless the

number of variables p is small, it is not possible to examine all of the

variances or the covariances between the variables manually. PCA over-

comes this limitation and transforms the data such that the uncorrelated

variables or principal components are ranked by the variance of the data

set in a single analysis. In terms of molecular dynamics simulations, PCA

ultimately gives a view of the atoms that move anisotropically to maximize

the variance.

3.2. Principal components

Before understanding the mathematical process on how PCA is carried

out, it is instructive to define the principal components. The first principal

component, z1, is simply a linear combination (dot product) of the original

variables x1, x2,y, xp,with a. Note that the mathematical dot product op-

erator takes two vectors and gives a scalar, or a new variable (principal

component) to describe the data.

z1 ¼ aT1x ¼ a11x1 þ a12x2 þ � � � þ a1pxp ¼
Xp

j¼1

a1jxj ð1Þ

The weights (a11, a12,y, a1p) are mathematically determined to maximize

the variation of the original data in x, subject to the normalization con-

straint that

a211 þ a212 þ � � � þ a21p ¼ 1 ð2Þ

The constraint is necessary; otherwise, the maximum can simply be in-

creased by increasing any component of aj. To be discussed later, the

weights for a particular component are used to interpret and account for

the variability in the data. Next, the second principal component, z2 ¼ a2
Tx,

is determined having a maximum variance that is uncorrelated with z1
subject to the same normalization constraint on a2p, and so on, so that the

kth principal component, zk ¼ ak
Tx, has maximum variance subject to

being uncorrelated with z1, z2,y, zk 1. The computed number of principal
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components will be same as the number of p original variables. However,

in highly correlated data sets, most of the variation from x will be ac-

counted for in a few principal components. In uncorrelated data sets, PCA

provides no statistical advantage in treating the data. Obviously, it is de-

sirable to have the value of m much less than the value of p to attain a

significant reduction in dimensionality of the data set, where m is the

number of principal components necessary to account for the majority of

the variation in the data set. The lack of correlation between the principal

components is a useful property, since the indices can be interpreted as

different ‘‘dimensions’’ describing the variation in the data set.

3.3. Covariance matrix

The process of determining the principal components starts with the con-

struction of the p� p covariance or correlation matrix from a collection of n
snapshot structures from molecular dynamics trajectories. The structure

matrix x is composed of the Cartesian coordinates for each time stamp

that defines each of the rows. The p columns of x are given by the 3N
Cartesian coordinates for each atom. It is necessary to transform x to re-

move rotation and translation contamination that does not contribute to the

real dynamics of the system. This is accomplished by aligning the structures

to a common structure. The reference structure for the alignment process

can be an averaged structure, any structure from the trajectory, or an ex-

perimental structure. Many techniques have been reported for comparing

and overlaying proteins for applications other than for PCA [133–149]. The

underlying procedure is essentially the same, where a subset of atoms for

the alignment process is selected, and then alignment is carried out using a

standard root-mean-square-deviation (RMSD) fit on the selected atoms

[150]. In studies involving PCA, it is most common to use the alpha carbons

or all of the non-hydrogen atoms in the alignment process.

Once x has been aligned, it is possible to compute the covariance matrix

elements. The average position oxi4 of the i th atom is computed along

the entire trajectory. The convariance between the i th and j th atoms over

the collection of n structures can be calculated as shown in equation (3).

Each covariance matrix element is determined, as shown in equation (3).

cij ¼
1

n

Xn

k¼1

ðxik � xih iÞðxjk � xj
� �

Þ i ¼ 1; 2; . . . ;p j ¼ 1;2; . . . ;p ð3Þ

The diagonal of the matrix is simply the variance of each coordinate. The

covariance is the difference between a variable and its mean multiplied by

S. A. M. Stein et al.238



the difference of another variable and its mean. Thus, if variable xi varies
largely from its mean, and variable xj varies largely in the same direction,

then the covariance matrix element, cij, will be large and positive. However,

the covariance matrix element for xi and xj will be small, if either or both

values are close to their corresponding means. With respect to a molecular

system, the covariance matrix element between two atoms will be large

and positive, if each of those atoms deviate largely from their equilibrium

positions and the deviations are in the same direction. Mathematically, the

covariance matrix summarizes the covariance between all variable com-

binations. This matrix is symmetric, so each row and column represents

coordinates from the same structures in the same order, i.e. the kth row

contains the same data points as the kth column.

3.4. Index of selectivity

The index of selectivity is simply the set of atoms identified for analysis.

The index of selectivity is a modification of the possible values of i and j in
equation (3). It is often assumed in the vast majority of studies utilizing

PCA that all atoms should be included in the covariance matrix construc-

tion. It is important to realize that selection of all atoms, all non-hydrogen

atoms, or all alpha carbons biases PCA to extract information involving

large-scale global motion. Thus, if localized events are important, and all

atoms are selected in the analysis, then the principal components method

will likely fail to discover the localized motions, forcing an analysis on

motion involving all of the atoms. This problem has been shown for the

understanding of the dynamics of carbonmonoxy myoglobin [92]. When all

of the non-hydrogen atoms were selected for the PCA, isotropic motion

was found, where over 15 dimensions were required to understand the

dynamics. However, when smaller and smaller volumes centered about

the carbon monoxide ligand were used to select a subset of atoms, the

amount of variance was found to be a maximum in two dimensions. Thus,

two amino acids, histidine 64 and arginine 45, were found to be respon-

sible for a majority of the anisotropic motion. The dynamics of the two

residues were found to explain the spectroscopic A-states of carbon-

monoxy myoglobin consistent with available kinetic and mutation data

[151–155]. Consequently, the index of selectivity is an important step in

the proper use of PCA.

3.5. Eigenanalysis

Analysis using PCA simply involves finding the eigenvectors and eigen-

values of the covariance matrix. The computed eigenvalues from the
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covariance matrix are the principal component variances. The eigenval-

ues are ordered from the largest to the smallest, so that l1 X l2 XyX lp
X 0. Specifically, the kth eigenvalue, lk, indicates the magnitude of the

variance of the data in the direction of the corresponding kth eigenvector.

The resulting eigenvectors provide the coefficients (weights) for the linear

combination of observed structures. These eigenvectors are often re-

ferred to as the ‘‘loadings’’ for the principal components, and referred to as

aj in our previous discussion above. Thus, the linear combination of ob-

served structures, zi ¼ ai
Tx, is known as the ith principal component.

zi ¼ ai1x1 þ ai2x2 þ � � � þ aipxp ð4Þ

In protein and nucleic acids, the important data variance can be accounted

for by a much smaller number of derived variables (principal components)

than the p variables from which the analysis begins. For example in the

case of nucleic acids, three principal components may account for 85% of

the variance in the data [156]. The first two or three principal components

often account for enough of the variance that important motions of the

protein or nucleic acid can be extracted.

3.6. Scree test dimensionality determination

A key step in PCA is the determination of the number of dimensions to which

the data is reduced. This is most easily accomplished by performing the

scree test, or by creating a scree plot [157,158]. This type of plot involves the

eigenvalues that are determined in the diagonalization of the covariance

matrix. In a scree plot, the x-axis is an index of the number of eigenvalues

determined. The eigenvalues are ordered from the strongest to weakest.

The y-axis gives the magnitude of the eigenvalues from the covariance

matrix diagonalization. It is customary to scale the eigenvalues such that

they sum to unity in order to determine more easily the percent of the

variance of the data accounted for the associated eigenvector. To accom-

plish this, each eigenvalue is divided by the sum of all of the eigenvalues.

To determine the appropriate dimensionality from the resulting analysis, it

is necessary to locate the kink in the scree plot, where the variance rapidly

falls to a relatively stable value. If the data is highly correlated initially, then

the first few dimensions will have large eigenvalues, which indicates that a

great amount of variance is described in those dimensions. The variance

should drop rapidly and form a relatively flat plateau. The correct dimen-

sionality is typically the dimension prior to the eigenvalue reaching the pla-

teau. The interpretation is such that adding the extra dimension does not
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result in any appreciable gain in information (variance) on the system, as

compared to the complexity of adding an additional dimension.

Two example scree plots from our earlier work on carbonmonoxy my-

oglobin are given below [92]. From both plots, it is possible to identify the

associated problems with the improper use of the index of selectivity, as

commonly assumed (Fig. 1).

When all atoms are used in the PCA, a well-defined kink is never re-

alized. The relative inertia monotonically decreases as the dimension in-

creases. A scree plot with this type of signature indicates that the variance

of the molecular system cannot be consolidated under a few dimensions.

In using such an index of selectivity, it would be impossible to determine

the correct dimensionality for further analysis. However, in Fig. 1b, where

a subset of atoms is used to define the index of selectivity, it is clear that a

significant portion of the system’s variance is captured in the first two

dimensions. In fact, approximately 70% of the information is found in the

first two principal components. In this specific case, the third dimension

delivers additional 10% of information; however, no useful data was found

upon examination. The two plots illustrate the problem associated with

assuming that all of the atoms should be used in the index of selectivity.

3.7. Visualization

The next step is visualization of the data using the dimensionality deter-

mined from the previous step. Projections of the original structures onto

the weights (eigenvectors) of the associated principal components are

plotted against each other as the scree plot dictates. Consequently, if M
structures are collected and used in the covariance matrix construction,

Fig. 1. Scree plots using indices of selectivity that include (a) all heavy
atoms and (b) His64, the CO ligand and the heme.

Principal Components Analysis 241



then M data points will be realized on the plots. The principal components

plots give information on the similarity of the M structures used to form the

covariance matrix. As an example, the two-dimensional plot correspond-

ing to 1045 structures and scree plot in Fig. 1b is given below.

Each point on the plot corresponds to a structure and its relation to all

other structures in the dimension(s) plotted. If two points are close to each

other on the plot, then those structures are similar. If two points on such a

plot are far from each other, then they are dissimilar in some fashion. It is

clear that this specific plot yields three general basins of structural sim-

ilarity. This behavior is consistent with the current ideas of energy land-

scapes, where multiple minima are clustered into regions that are

separated by higher energy barriers [159]. It is at this juncture that the

origin of dissimilarity between the three energy basins cannot be derived

from the principal components plots alone. All that is known is that the

structures are different given the index of selectivity utilized. In this specific

instance, the difference was determined to be a result of the structural

change of histidine 64, since that was the primary constituent of the index

of selectivity. More traditional methods such as constructing the RMSD
between the two structures from the different energy basins as a function

of its sequence can usually pinpoint the molecular reasons of conformat-

ional differences. It is through the pair wise comparison of structures from

the different basins that a molecular interpretation may be formulated in

describing the different conformations sampled by the molecular system.

A major result of the Schulze and Evanseck study was that histidine 64

moved in from the solvent to the ligand by �10 Å on a timescale consistent

with experiment [151], as shown in Fig. 2b.

When more than three dimensions are indicated by the scree plot, it is

possible to examine the variance at the higher dimensions. As an exam-

ple, when the first and second principal components are determined (us-

ing the scree test) to describe large amounts of variance, and when the

third and fourth are very close together in magnitude, two separate plots

may be created to help characterize molecular motion. The first plot may

have the first, second, and third principal components as the axes, and the

second plot would use first, second, and fourth as the axes.

4. ESSENTIAL DYNAMICS

4.1. Background

Certain types of internal motions allow proteins to perform their biological

functions. These motions may enable the binding of substrates, adaptation
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to various environments, or conformational changes that allow binding of a

substrate at another site on the protein (allosteric effects). The internal

motions may be subtle and can involve complicated correlations between

atomic motions, and thus the challenge presented is to identify these mo-

tions, determine how they relate to protein function, and to separate the

complicated dynamics from the essential degrees of freedom

[102,160,161]. Amadei and coworkers first developed the method known

as essential dynamics in order to separate the concerted structural rear-

rangement from irrelevant motions [161]. Their method is based on the

hypothesis that by using PCA, atomic positional fluctuations can be used to

separate a protein’s conformational space into two subspaces: an ‘‘essen-

tial’’ subspace which contains only a few degrees of freedom that describe

the motions relevant for protein function (e.g., opening and closing and

hinge bending motions) and the remaining subspace (‘‘constrained sub-

space’’) that describes the irrelevant local fluctuations of the protein. This

group used lysozyme as their test case of the essential dynamics method,

and they concluded that the essential dynamics of most proteins can be

described in a subspace of only a few degrees of freedom, while all other

degrees of freedom represent much less important and mostly independent

fluctuations of the molecule.

The essential dynamics method involves the use of a covariance matrix

constructed from structures sampled throughout a molecular dynamics

simulation. By diagonalization of a covariance matrix of the atomic

Fig. 2. (a) The two dimensional principal component plot of carbon-
monoxy myoglobin using the coordinates of His64, the ligand and heme.
The different symbols indicate different starting conditions of the multiple
short time trajectories used to form the ensemble of structures. (b) Vectors
showing the conformational change extracted from Fig. 2a.
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coordinates of the system, the motions of a structure that are responsible

for the most variance in atomic position are targeted. The essential sub-

space is determined by ranking the eigenvalues elucidated by PCA, of the

covariance matrix from the molecular dynamics trajectory. The mathe-

matical equivalence between PCA and essential dynamics has been

noted before [88,162–168] and has described within this document.

4.2. Applications to protein systems

Many authors of protein simulation studies have used the essential dy-

namics method in order to identify important molecular vibrations to un-

derstand more about large correlated protein motions and how they are

critical to biological function. PCA has been used in a wide array of ap-

plications ranging from crystallographic and NMR structure ensembles

[63,64,73,80,169–177], protein and peptide folding/unfolding

[47,54,66,67,99,167,178–184], structural determinants of transmembrane

proteins and channels [49,51,55,69,90,101,185–191], large-scale domain

motion [58,77,98,104,192–199], locally accessible conformational sub-

states [52,60,92,96,97,103,200], correlated and functional motion

[39,56,57,61,71,84,163,166,168,201–215], dynamic effects from muta-

tions and domain swapping [216–219], mutation impact upon binding

[220–223], connection between structural similarity and dynamic behavior

[87,89,164,224], ligand binding and migration [53,74,82,225–233], con-

formations of small molecules [72,79,91], protonation effects on dynamics

[234], liquid behavior and spectroscopy [48,75,76], testing and develop-

ment of methodology [46,59,62,65,78,83,85,86,235], protein docking al-

gorithms [68,70,236–238], homology modeling [100], and atomic and

molecular properties [50,95].

4.3. Applications to nucleic acids

PCA has been shown to be a powerful tool in evaluation of DNA flexibility

in molecular dynamics simulations [162,239–241]. This technique has

been employed to examine nucleic acid flexibility [239,240,242], flexibility

of hybrid nucleic acids [243], flexibility of DNA in the crystal environment

[240], behavior of A-tract DNA [93], electrostatic interactions of nucleic

acids [83,156], sequence effects [27,28], DNA containing chemical mod-

ifications [81,244–246], broken strand DNA [247], base flipping [248], and

nucleic acid mispairs [242]. The potential energy surface of nucleic acid

conformational changes have also been investigated using PCA [156]. As

new techniques in molecular dynamics simulations emerge, PCA has

been used to evaluate the quality of simulations [249–251].
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5. RELATED METHODS

5.1. Independent component analysis

Independent component analysis (ICA) is a multivariate technique that is

used to separate independent variables in a data set [252,253]. Unlike

PCA, ICA is not typically used as a dimensionality reduction technique. In

ICA, the data must be fit to a model (not necessarily a linear model) [254]

in which the derived variables are as statistically independent as possible.

In chemical applications, it is generally favorable if the number of derived

variables (principal components, latent variables) is much smaller than the

number of original observations collected. Therefore, a data reduction

technique such as PCA may be performed before standard ICA is carried

out [252,255]. Thus, the focus of ICA is on the subspace accounting for

the most variance in the data set when the analysis begins [252]. Westad

and Kermit investigated validation methods for ICA and found that cross-

validation was a valuable tool for determining the number of principal

components to use from the preliminary reduction step and the number of

ICs to extract in the actual ICA [256]. Yadava and Chaudhary applied ICA

to determine analyte solvation parameters on polymer-coated surface

acoustic wave vapor sensors [255]. ICA was employed because PCA did

not yield derived variables that were interpretable for this particular type of

experiment. ICA has been used in analysis of spectroscopic data

[257,258]. Medical image processing is also an area in which ICA has

been used [259]. Other uses of ICA include analysis of natural systems

such as seismological and atmospheric data [260] and atmospheric aer-

osol content [261].

5.2. Singular value decomposition

The singular value decomposition (SVD) technique was established by

several mathematicians who worked independently to develop the theory

leading to the efficient diagonalization of a matrix [262]. Although SVD has

many uses, it is commonly used to extract eigenvalues from a symmetric

matrix [263]. As such, the technique has been used in PCA [94,264,265].

SVD may be used as a tool to execute PCA on a variety of systems

including NMR spectroscopy [194,266] and X-ray photoelectron spectro-

microscopy [265]. Andrews and coworkers used the SVD algorithm to

perform PCA on myoglobin. In their work, SVD was chosen because it is

computationally efficient. SVD was carried out on the internal coordinates

of the myoglobin, which gave similar results as the SVD of the Cartesian

coordinates [94]. Tomfohr and coworkers used SVD to diagonalize a ma-
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trix for dimensionality reduction of gene expression data [264]. SVD may

also be used to carry out Gaussian network model analysis [267].

6. LIMITATIONS AND COMMON ERRORS

Multivariate techniques can be very powerful in data analysis. However,

there are only a few papers that critically examine the possible weak-

nesses of multivariate analyses [102,268]. When using these statistical

tools on molecular dynamics simulations, one should realize that there

exist potential sources of error that could bias the analysis and provide

misleading or wrong interpretations of the data.

The first and most important source of error deals with the well-

documented sampling issues with molecular dynamics simulations

[8,9,11,13,39]. The goal of applying PCA to molecular dynamics trajec-

tories is to extract and understand the dynamics of the system. Conse-

quently, if the trajectory samples only a portion of available structures from

the true ensemble, then PCA will extract and provide information on the

incomplete representation of phase space. Multivariate analysis will

not create data to correct problems with the generation of the original

data set.

Secondly, the index of selectivity is crucial to a successful PCA, which is

often overlooked in a majority of studies utilizing dimensionality reduction

and molecular dynamics. Care needs to be exercised in atom selection,

where all atoms, all nonhydrogen atoms, or all alpha carbons of proteins

are typically used for analysis. Selection based upon all atoms is correct,

as long as low-frequency, large-scale motions are desired. However, it

should be clear that molecular motion need not be large scale. As men-

tioned before, many well-understood examples show that local-motion is

connected with function, as gateways [31–33], hinged-lids [34–38], and

combined levers and gates [39]. Therefore, important motions could be

localized and only a subset of the atoms is needed within the range of

molecular motions. In carbonmonoxy myoglobin, it was necessary to

modify the index of selectivity, based upon previous knowledge of the

binding site, in order to discover the local motion responsible for the

spectroscopic A-states [39]. Indices of selectivity can bias multivariate

analysis, where it is necessary to have a course idea of the type of dy-

namics of interest, i.e., local or global motion, in molecular dynamics

simulations.

Lastly, when working with PCA, it is essential to bear in mind that the

major assumption is that the sources of largest variance are of importance

to the problem being addressed. However, caution needs to be exercised
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in mixed data sets that involve more than the atomic coordinates from

molecular dynamics trajectories. For example, differences in the units

could be involved, where the original data may be composed of differently

measured characteristics. For example, the variation in angstroms in

atomic position is obviously different than the variation of pH or temper-

ature. Even when the same units are used, it is plausible that one meas-

ured quantity may have a completely different range of behavior

compared to another. Consider the variation in covalent bond length ver-

sus the variation in intermolecular hydrogen bonding. When variables with

large variance are compared with variables of small variance, those with

larger associated variance will be weighted more heavily in construction of

the principal components. This weighting is simply due to the fact that the

goal in constructing the principal components is to maximize variance. In

cases with variables with widely ranging variance, using a covariance

matrix of standardized variables, or correlation matrix to determine the

principal components may help to alleviate this issue [45].

7. CONCLUSION

The continued advances in readily available computer power coupled with

the desire to explore dynamics at longer time scales means that the

magnitude and complexity of accessible dynamics data will keep growing.

By necessity, methods to reduce the size of this data will continue to be

valued by computational chemists. In this review, we have sought to

highlight the utility of PCA to reduce the complexity of variables describing

the dynamics data. PCA and the mathematically identical essential dy-

namics, have proved useful in the detection of important motions in bio-

molecules ranging from proteins to nucleic acids. Provided that

appropriate care is taken with the use of these methods, computational

chemists should find PCA useful in managing large, complex data sets

and discovering molecular motions that are biochemically relevant.
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