References

Abegg74P. W. Abegg and T.-K. Ha, “Ab initio calculation of spin-orbit-coupling constant from Gaussian lobe SCF molecular wavefunctions,” Mol. Phys., 27 (1974) 763-67.
Abegg75P. W. Abegg, “Ab initio calculation of spin-orbit-coupling constants for Gaussian lobe and Gaussian-type wave-functions,” Mol. Phys., 30 (1975) 579-96.
Abraham93M. H. Abraham, “Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes,” Chem. Soc. Reviews, 22 (1993) 73.
Adamo90C. Adamo, M. Cossi, N. Rega, and V. Barone, in Theoretical Biochemistry: Processes and Properties of Biological Systems, Theoretical and Computational Chemistry, Vol. 9 (Elsevier, New York, 1990).
Adamo97C. Adamo and V. Barone, “Toward reliable adiabatic connection models free from adjustable parameters,” Chem. Phys. Lett., 274 (1997) 242-50.
Adamo98C. Adamo and V. Barone, “Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models,” J. Chem. Phys., 108 (1998) 664-75.
Adamo98aC. Adamo and V. Barone, “Implementation and validation of the Lacks-Gordon exchange functional in conventional density functional and adiabatic connection methods,” J. Comp. Chem., 19 (1998) 418-29.
Adamo99aC. Adamo and V. Barone, “Toward reliable density functional methods without adjustable parameters: The PBE0 model,” J. Chem. Phys., 110 (1999) 6158-69.
Almlof82J. Almlöf, K. Korsell, and K. Fægri Jr., “Principles for a direct SCF approach to LCAO-MO ab-initio calculations,” J. Comp. Chem., 3 (1982) 385-99.
Amos82R. D. Amos, “Electric and Magnetic Properties of CO, HF, HCl and CH3F,” Chem. Phys. Lett., 87 (1982) 23-26.
Amos84R. D. Amos, “Dipole-moment derivatives of H2O and H2S,” Chem. Phys. Lett., 108 (1984) 185-90.
Anders93E. Anders, R. Koch, and P. Freunscht, “Optimization and application of lithium parameters for PM3,” J. Comp. Chem., 14 (1993) 1301-12.
Anderson86W. P. Anderson, W. D. Edwards, and M. C. Zerner, “Calculated Spectra of Hydrated Ions of the First Transition-Metal Series,” Inorganic Chem., 25 (1986) 2728-32.
Andrae90D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss, “Energy-adjusted ab initio pseudopotentials for the 2nd and 3rd row transition-elements,” Theor. Chem. Acc., 77 (1990) 123-41.
Andzelm92J. Andzelm and E. Wimmer, “Density functional Gaussian-type-orbital approach to molecular geometries, vibrations, and reaction energies,” J. Chem. Phys., 96 (1992) 1280-303.
Atkins69P. W. Atkins and L. D. Barron, “Rayleigh Scattering of Polarized Photons by Molecules,” Mol. Phys., 16 (1969) 453.
Austin02A. J. Austin, M. J. Frisch, J. A. Montgomery Jr., and G. A. Petersson, “An overlap criterion for selection of core orbitals,” Theor. Chem. Acc., 107 (2002) 180-86.
Austin12 A. Austin, G. Petersson, M. J. Frisch, F. J. Dobek, G. Scalmani, and K. Throssell, “A density functional with spherical atom dispersion terms”, J. Chem. Theory and Comput. 8 (2012) 4989.
Autschbach02J. Autschbach, T. Ziegler, S. J. A. van Gisbergen, and E. J. Baerends, “Chiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules,” J. Chem. Phys., 116 (2002) 6930-40.
Ayala97P. Y. Ayala and H. B. Schlegel, “A combined method for determining reaction paths, minima and transition state geometries,” J. Chem. Phys., 107 (1997) 375-84.
Ayala98P. Y. Ayala and H. B. Schlegel, “Identification and treatment of internal rotation in normal mode vibrational analysis,” J. Chem. Phys., 108 (1998) 2314-25.
Baboul97A. G. Baboul and H. B. Schlegel, “Improved Method for Calculating Projected Frequencies along a Reaction Path,” J. Chem. Phys., 107 (1997) 9413-17.
Baboul99A. G. Baboul, L. A. Curtiss, P. C. Redfern, and K. Raghavachari, “Gaussian-3 theory using density functional geometries and zero-point energies,” J. Chem. Phys., 110 (1999) 7650-57.
Bacon79A. D. Bacon and M. C. Zerner, “An Intermediate Neglect of Differential Overlap Theory for Transition Metal Complexes: Fe, Co, and Cu Chlorides,” Theor. Chem. Acc., 53 (1979) 21-54.
Bacskay81G. B. Bacskay, “A Quadratically Convergent Hartree-Fock (QC-SCF) Method. Application to Closed Systems,” Chem. Phys., 61 (1981) 385-404.
Bak93K. L. Bak, P. Jørgensen, T. Helgaker, K. Ruud, and H. J. A. Jensen, “Gauge-Origin Independent Multiconfigurational Self-Consistent-Field Theory for Vibrational Circular-Dichroism,” J. Chem. Phys., 98 (1993) 8873-87.
Bak94K. L. Bak, P. Jørgensen, T. Helgaker, and K. Ruud, “Basis Set Convergence and Correlation Effects in Vibrational Circular Dichroism Calculations Using London Atomic Orbitals,” Faraday Discuss., 99 (1994) 121.
Bak95K. L. Bak, A. E. Hansen, K. Ruud, T. Helgaker, J. Olsen, and P. Jørgensen, “Ab Initio Calculation of Electronic Circular-Dichroism for trans-Cyclooctene Using London Atomic Orbitals,” Theor. Chem. Acc., 90 (1995) 441-58.
Baker86J. Baker, “An algorithm for the location of transition-states,” J. Comp. Chem., 7 (1986) 385-95.
Baker87J. Baker, “An algorithm for geometry optimization without analytical gradients,” J. Comp. Chem., 8 (1987) 563-74.
Baker93J. Baker, “Techniques for geometry optimization - a comparison of cartesian and natural internal coordinates,” J. Comp. Chem., 14 (1993) 1085-100.
Bakken99V. Bakken, J. M. Millam, and H. B. Schlegel, “Ab initio classical trajectories on the Born-Oppenheimer Surface: Updating methods for Hessian-Based Integrators,” J. Chem. Phys., 111 (1999) 8773-77.
Banerjee85A. Banerjee, N. Adams, J. Simons, and R. Shepard, “Search for Stationary Points on Surfaces,” J. Phys. Chem., 89 (1985) 52-57.
Barnes09 E. C. Barnes, G. A. Petersson, J. A. Montgomery Jr., M. J. Frisch, and J. M. L. Martin, "Unrestricted Coupled Cluster and Brueckner Doubles Variations of W1 Theory," J. Chem. Theor. Comput., 5 (2009) 2687.
Barone02V. Barone, J. E. Peralta, R. H. Contreras, and J. P. Snyder, “DFT Calculation of NMR JFF Spin-Spin Coupling Constants in Fluorinated Pyridines,” J. Phys. Chem. A, 106 (2002) 5607-12.
Barone03V. Barone, M. Cossi, N. Rega, and G. Scalmani, “Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model,” J. Comp. Chem., 24 (2003) 669-81.
Barone04V. Barone, “Vibrational zero-point energies and thermodynamic functions beyond the harmonic approximation,” J. Chem. Phys., 120 (2004) 3059-65.
Barone05V. Barone, “Anharmonic vibrational properties by a fully automated second-order perturbative approach,” J. Chem. Phys., 122 (2005) 014108: 1-10.
Barone09V. Barone, J. Bloino, M. Biczysko, and F. Santoro, “Fully integrated approach to compute vibrationally resolved optical spectra: From small molecules to macrosystems,” J. Chem. Theory and Comput., 5 (2009) 540-54.
Barone12 V. Barone, A. Baiardi, M. Biczisko, J. Bloino, C. Cappelli and F. Lipparini, “Implementation and validation of a multi-purpose virtual spectrometer for large systems in complex environments,” Phys. Chem. Chem. Phys . 14 (2012) 12404 - 422.
Barone94V. Barone, “Characterization of the potential energy surface of the HO2 molecular system by a density functional approach,” J. Chem. Phys., 101 (1994) 10666-76.
Barone95V. Barone and C. Minichino, “From concepts to algorithms for the treatment of large-amplitude internal motions and unimolecular reactions,” J. Mol. Struct. (Theochem), 330 (1995) 365-76.
Barone96V. Barone, “Electronic, vibrational and environmental effects on the hyperfine coupling constants of nitroside radicals. H2NO as a case study,” Chem. Phys. Lett., 262 (1996) 201-06.
Barone96aV. Barone, in Recent Advances in Density Functional Methods, Part I, Ed. D. P. Chong (World Scientific Publ. Co., Singapore, 1996).
Barone97V. Barone, M. Cossi, and J. Tomasi, “A new definition of cavities for the computation of solvation free energies by the polarizable continuum model,” J. Chem. Phys., 107 (1997) 3210-21.
Barone98V. Barone and M. Cossi, “Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model,” J. Phys. Chem. A, 102 (1998) 1995-2001.
Barone98aV. Barone, M. Cossi, and J. Tomasi, “Geometry optimization of molecular structures in solution by the polarizable continuum model,” J. Comp. Chem., 19 (1998) 404-17.
Barron04L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University Press, Cambridge, UK, 2004).
Barron71L. D. Barron and A. D. Buckingham, “Rayleigh and Raman Scattering from Optically Active Molecules,” Mol. Phys., 20 (1971) 1111.
Bartlett78R. J. Bartlett and G. D. Purvis III, “Many-body perturbation-theory, coupled-pair many-electron theory, and importance of quadruple excitations for correlation problem,” Int. J. Quantum Chem., 14 (1978) 561-81.
Barysz01M. Barysz and A. J. Sadlej, “Two-component methods of relativistic quantum chemistry: From the Douglas-Kroll approximation to the exact two-component formalism,” J. Mol. Struct. (Theochem), 573 (2001) 181-200.
Bauernschmitt96R. Bauernschmitt and R. Ahlrichs, “Stability analysis for solutions of the closed shell Kohn-Sham equation,” J. Chem. Phys., 104 (1996) 9047-52.
Bauernschmitt96aR. Bauernschmitt and R. Ahlrichs, “Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory,” Chem. Phys. Lett., 256 (1996) 454-64.
Bearpark94M. J. Bearpark, M. A. Robb, and H. B. Schlegel, “A Direct Method for the Location of the Lowest Energy Point on a Potential Surface Crossing,” Chem. Phys. Lett., 223 (1994) 269-74.
Becke88bA. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic-behavior,” Phys. Rev. A, 38 (1988) 3098-100.
Becke89aA. D. Becke and M. R. Roussel, “Exchange holes in inhomogeneous systems: A coordinate-space model,” Phys. Rev. A, 39 (1989) 3761-67.
Becke92A. D. Becke, “Density-functional thermochemistry. I. The effect of the exchange-only gradient correction,” J. Chem. Phys., 96 (1992) 2155-60.
Becke92aA. D. Becke, “Density-functional thermochemistry. II. The effect of the Perdew-Wang generalized-gradient correlation correction,” J. Chem. Phys., 97 (1992) 9173-77.
Becke93A. D. Becke, “A new mixing of Hartree-Fock and local density-functional theories,” J. Chem. Phys., 98 (1993) 1372-77.
Becke93aA. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., 98 (1993) 5648-52.
Becke96A. D. Becke, “Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing,” J. Chem. Phys., 104 (1996) 1040-46.
Becke97A. D. Becke, “Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals,” J. Chem. Phys., 107 (1997) 8554-60.
Benson68S. W. Benson, Thermochemical Kinetics (Wiley and Sons, New York, 1968).
Berger97R. Berger and M. Klessinger, “Algorithms for exact counting of energy levels of spectroscopic transitions at different temperatures,” J. Comp. Chem., 18 (1997) 1312-19.
Berger98R. Berger, C. Fischer, and M. Klessinger, “Calculation of the vibronic fine structure in electronic spectra at higher temperatures. 1. Benzene and pyrazine,” J. Phys. Chem. A, 102 (1998) 7157-67.
Bergner93A. Bergner, M. Dolg, W. Kuechle, H. Stoll, and H. Preuss, “Ab-initio energy-adjusted pseudopotentials for elements of groups 13-17,” Mol. Phys., 80 (1993) 1431-41.
Bernardi84F. Bernardi, A. Bottini, J. J. W. McDougall, M. A. Robb, and H. B. Schlegel, “MCSCF gradient calculation of transition structures in organic reactions,” Far. Symp. Chem. Soc., 19 (1984) 137-47.
Bernardi88F. Bernardi, A. Bottoni, M. J. Field, M. F. Guest, I. H. Hillier, M. A. Robb, and A. Venturini, “MC-SCF Study of the Diels-Alder Reaction Between Ethylene and Butadiene,” J. Am. Chem. Soc., 110 (1988) 3050-55.
Bernardi88aF. Bernardi, A. Bottoni, M. Olivucci, M. A. Robb, H. B. Schlegel, and G. Tonachini, “Do Supra-Antara Paths Really Exist for 2+2 Cycloaddition Reactions? Analytical Computation of the MC-SCF Hessians for Transition States of C2H4 with C2H4, Singlet O2, and Ketene,” J. Am. Chem. Soc., 110 (1988) 5993-95.
Bernardi90F. Bernardi, A. Bottoni, M. A. Robb, and A. Venturini, “MC-SCF study of the cycloaddition reaction between ketene and ethylene,” J. Am. Chem. Soc., 112 (1990) 2106-14.
Bernardi92F. Bernardi, M. Olivucci, I. Palmer, and M. A. Robb, “An MC-SCF study of the thermal and photochemical cycloaddition of Dewar benzene,” J. Organic Chem., 57 (1992) 5081-87.
Bernardi96F. Bernardi, M. A. Robb, and M. Olivucci, “Potential energy surface crossings in organic photochemistry,” Chem. Soc. Reviews, 25 (1996) 321.
Besler90B. H. Besler, K. M. Merz Jr., and P. A. Kollman, “Atomic charges derived from semiempirical methods,” J. Comp. Chem., 11 (1990) 431-39.
Bingham75R. C. Bingham, M. J. S. Dewar, and D. H. Lo, “Ground-states of molecules. 25. MINDO-3 - Improved version of MINDO semiempirical SCF-MO method,” J. Am. Chem. Soc., 97 (1975) 1285-93.
Binkley80aJ. S. Binkley, J. A. Pople, and W. J. Hehre, “Self-Consistent Molecular Orbital Methods. 21. Small Split-Valence Basis Sets for First-Row Elements,” J. Am. Chem. Soc., 102 (1980) 939-47.
Binning90R. C. Binning Jr. and L. A. Curtiss, “Compact contracted basis-sets for 3rd-row atoms - GA-KR,” J. Comp. Chem., 11 (1990) 1206-16.
Blaudeau97J.-P. Blaudeau, M. P. McGrath, L. A. Curtiss, and L. Radom, “Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca,” J. Chem. Phys., 107 (1997) 5016-21.
Bloino12 J. Bloino and V. Barone, “A second-order perturbation theory route to vibrational averages and transition properties of molecules: General formulation and application to infrared and vibrational circular dichroism spectroscopies,“ J. Chem. Phys. 136 (2012) 124108.
Bloino12a J. Bloino, M. Biczysko and V. Barone, “General perturbative approach for spectroscopy, thermodynamics and kinetics: Methodological background and benchmark studies,” JCTC 8 (2012) 1015-1036.
Bobrowicz77F. W. Bobrowicz and W. A. Goddard III, in Methods of Electronic Structure Theory, Ed. H. F. Schaefer III, Modern Theoretical Chemistry, Vol. 3 (Plenum, New York, 1977) 79-126.
Boese00A. D. Boese, N. L. Doltsinis, N. C. Handy, and M. Sprik, “New generalized gradient approximation functionals,” J. Chem. Phys., 112 (2000) 1670-78.
Boese01A. D. Boese and N. C. Handy, “A new parametrization of exchange-correlation generalized gradient approximation functionals,” J. Chem. Phys., 114 (2001) 5497-503.
Boese02A. D. Boese and N. C. Handy, “New exchange-correlation density functionals: The role of the kinetic-energy density,” J. Chem. Phys., 116 (2002) 9559-69.
Boese04A. D. Boese and J. M. L. Martin, “Development of Density Functionals for Thermochemical Kinetics,” J. Chem. Phys., 121 (2004) 3405-16.
Bofill89J. M. Bofill and P. Pulay, “The unrestricted natural orbital-complete active space (UNO-CAS) method: An inexpensive alternative to the complete active space-self-consistent-field (CAS-SCF) method,” J. Chem. Phys., 90 (1989) 3637-46.
Bofill94J. M. Bofill, “Updated Hessian matrix and the restricted step method for locating transition structures,” J. Comp. Chem., 15 (1994) 1-11.
Bofill95J. M. Bofill and M. Comajuan, “Analysis of the updated Hessian matrices for locating transition structures,” J. Comp. Chem., 16 (1995) 1326-38.
Bohmann97J. A. Bohmann, F. Weinhold, and T. C. Farrar, “Natural Chemical Shielding Analysis of Nuclear Magnetic Resonance Shielding Tensors from Gauge-Including Atomic Orbital Calculations,” J. Chem. Phys., 107 (1997) 1173-84.
Bolton98K. Bolton, W. L. Hase, and G. H. Peslherbe, in Modern Methods for Multidimensional Dynamics Computation in Chemistry, Ed. D. L. Thompson (World Scientific, Singapore, 1998) 143.
Borrelli03R. Borrelli and A. Peluso, “Dynamics of radiationless transitions in large molecular systems: A Franck-Condon-based method accounting for displacements and rotations of all the normal coordinates,” J. Chem. Phys., 119 (2003) 8437-48.
Boys60S. F. Boys, “Construction of Molecular Orbitals to be Approximately Invariant for Changes from One Molecule to Another,” Rev. Mod. Phys., 32 (1960) 296-99.
Boys66S. F. Boys, in Quantum Theory of Atoms, Molecules and the Solid State, Ed. P.-O. Löwdin (Academic Press, New York, 1966) 253.
Boys70S. F. Boys and F. Bernardi, “Calculation of Small Molecular Interactions by Differences of Separate Total Energies - Some Procedures with Reduced Errors,” Mol. Phys., 19 (1970) 553.
Breneman90C. M. Breneman and K. B. Wiberg, “Determining atom-centered monopoles from molecular electrostatic potentials - the need for high sampling density in formamide conformational-analysis,” J. Comp. Chem., 11 (1990) 361-73.
Buckingham67A. D. Buckingham, in Advances in Chemical Physics, Ed. I. Prigogine, Vol. 12 (Wiley Interscience, New York, 1967) 107.
Buckingham68A. D. Buckingham and G. C. Longuet-Higgins, “Quadrupole Moments of Dipolar Molecules,” Mol. Phys., 14 (1968) 63.
Bunker71D. L. Bunker, “Classical Trajectory Methods,” Meth. Comp. Phys., 10 (1971) 287.
Burant96J. C. Burant, M. C. Strain, G. E. Scuseria, and M. J. Frisch, “Kohn-Sham Analytic Energy Second Derivatives with the Gaussian Very Fast Multipole Method (GvFMM),” Chem. Phys. Lett., 258 (1996) 45-52.
Burant96aJ. C. Burant, M. C. Strain, G. E. Scuseria, and M. J. Frisch, “Analytic Energy Gradients for the Gaussian Very Fast Multipole Method (GvFMM),” Chem. Phys. Lett., 248 (1996) 43-49.
Burant96bJ. C. Burant, G. E. Scuseria, and M. J. Frisch, “Linear scaling method for Hartree-Fock exchange calculations of large molecules,” J. Chem. Phys., 105 (1996) 8969-72.
Burke98K. Burke, J. P. Perdew, and Y. Wang, in Electronic Density Functional Theory: Recent Progress and New Directions, Ed. J. F. Dobson, G. Vignale, and M. P. Das (Plenum, 1998).
Califano76S. Califano, Vibrational States (Wiley, London, 1976).
Cammi00R. Cammi, B. Mennucci, and J. Tomasi, “Fast evaluation of geometries and properties of excited molecules in solution: A Tamm-Dancoff model with application to 4-dimethylaminobenzonitrile,” J. Phys. Chem. A, 104 (2000) 5631-37.
Cammi00aR. Cammi, C. Cappelli, S. Corni, and J. Tomasi, “On the calculation of infrared intensities in solution within the polarizable continuum model,” J. Phys. Chem. A, 104 (2000) 9874-79.
Cammi99R. Cammi, B. Mennucci, and J. Tomasi, “Second-order Møller-Plesset analytical derivatives for the polarizable continuum model using the relaxed density approach,” J. Phys. Chem. A, 103 (1999) 9100-08.
Cances01E. Cancès and B. Mennucci, “Comment on‘Reaction field treatment of charge penetration‘,” J. Chem. Phys., 114 (2001) 4744-45.
Cances97E. Cancès, B. Mennucci, and J. Tomasi, “A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anistropic dielectrics,” J. Chem. Phys., 107 (1997) 3032-41.
Cao01X. Y. Cao and M. Dolg, “Valence basis sets for relativistic energy-consistent small-core lanthanide pseudopotentials,” J. Chem. Phys., 115 (2001) 7348-55.
Cao02X. Y. Cao and M. Dolg, “Segmented contraction scheme for small-core lanthanide pseudopotential basis sets,” J. Mol. Struct. (Theochem), 581 (2002) 139-47.
Cappelli02C. Cappelli, S. Corni, B. Mennucci, R. Cammi, and J. Tomasi, “Vibrational Circular Dichroism within the Polarizable Continuum Model: A Theoretical Evidence of Conformation Effects and Hydrogen Bonding for (S)-(-)-3-Butyn-2-ol in CCl4 Solution,” J. Phys. Chem. A, 106 (2002) 12331-39.
Car85R. Car and M. Parrinello, “Unified Approach for Molecular-Dynamics and Density-Functional Theory,” Phys. Rev. Lett., 55 (1985) 2471-74.
Caricato06M. Caricato, B. Mennucci, J. Tomasi, F. Ingrosso, R. Cammi, S. Corni, and G. Scalmani, “Formation and relaxation of excited states in solution: A new time dependent polarizable continuum model based on time dependent density functional theory,” J. Chem. Phys., 124 (2006) 124520.
Caricato12a M. Caricato, “Exploring potential energy surfaces of electronic excited states in solution with the EOM-CCSD-PCM method,” J. Chem. Theory and Comput., 8 (2012) 5081-9.
Caricato12b M. Caricato, “Absorption and Emission Spectra of Solvated Molecules with the EOM-CCSD-PCM Method,” J. Chem. Theory & Comput., 8 (2012) 4494.
Caricato13 M. Caricato, F. Lipparini, G. Scalmani, C. Cappelli, and V. Barone, “Vertical electronic excitations in solution with the EOM-CCSD method combined with a polarizable explicit/implicit solvent model,” J. Chem. Theory and Comput., 9 (2013) 3035.
Caricato13a M. Caricato, “A Comparison between State-Specific and Linear-Response Formalisms for the Calculation of Vertical Electronic Transition Energy in Solution with the CCSD-PCM Method,” J. Chem. Phys., 139 (2013) 044116.
Caricato13b M. Caricato, “Implementation of the CCSD-PCM linear response function for frequency dependent properties in solution: Application to polarizability and specific rotation,” J. Chem. Phys., 139 (2013) 114103 1-6.
Carpenter87 J. E. Carpenter, <i>Extension of Lewis structure concepts to open-shell and excited-state molecular species</i>, Ph.D. thesis, University of Wisconsin, Madison, WI, 1987.
Carpenter88J. E. Carpenter and F. Weinhold, “Analysis of the geometry of the hydroxymethyl radical by the different hybrids for different spins natural bond orbital procedure,” J. Mol. Struct. (Theochem), 46 (1988) 41-62.
Carsky91P. Cársky and E. Hubak, “Restricted Hartree-Fock and Unrestricted Hartree-Fock as reference states in many-body perturbation-theory: A critical comparison of the two approaches,” Theor. Chem. Acc., 80 (1991) 407-25.
Casida98M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, “Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold,” J. Chem. Phys., 108 (1998) 4439-49.
Cederbaum75L. S. Cederbaum, “One-body Green's function for atoms and molecules: theory and application,” J. Phys. B, 8 (1975) 290-303.
Cederbaum77L. S. Cederbaum and W. Domcke, in Advances in Chemical Physics, Ed. I. Prigogine and S. A. Rice, Vol. 36 (Wiley & Sons, New York, 1977) 205.
Cerjan81C. J. Cerjan and W. H. Miller, “On Finding Transition States,” J. Chem. Phys., 75 (1981) 2800-06.
Chai08J.-D. Chai and M. Head-Gordon, “Systematic optimization of long-range corrected hybrid density functionals,” J. Chem. Phys., 128 (2008) 084106.
Chai08aJ.-D. Chai and M. Head-Gordon, “Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections,” Phys. Chem. Chem. Phys., 10 (2008) 6615-20.
Charney79E. Charney, The Molecular Basis of Optical Activity (Wiley, New York, 1979).
Cheeseman11a J. R. Cheeseman, M. J. Frisch, “Basis Set Dependence of Vibrational Raman and Raman Optical Activity Intensities”, J. Chem. Theory and Comput., 7, (2011), 3323-3334.
Cheeseman96J. R. Cheeseman, G. W. Trucks, T. A. Keith, and M. J. Frisch, “A Comparison of Models for Calculating Nuclear Magnetic Resonance Shielding Tensors,” J. Chem. Phys., 104 (1996) 5497-509.
Cheeseman96aJ. R. Cheeseman, M. J. Frisch, F. J. Devlin, and P. J. Stephens, “Ab Initio Calculation of Atomic Axial Tensors and Vibrational Rotational Strengths Using Density Functional Theory,” Chem. Phys. Lett., 252 (1996) 211-20.
Chen94W. Chen, W. L. Hase, and H. B. Schlegel, “Ab initio classical trajectory study of H2C → H2 + CO dissociation,” Chem. Phys. Lett., 228 (1994) 436-42.
Chipman00D. M. Chipman, “Reaction field treatment of charge penetration,” J. Chem. Phys., 112 (2000) 5558-65.
Chirlian87L. E. Chirlian and M. M. Francl, “Atomic charges derived from electrostatic potentials - a detailed study,” J. Comp. Chem., 8 (1987) 894-905.
Cimiraglia80R. Cimiraglia, M. Persico, and J. Tomasi, “Roto-electronic and spin-orbit couplings in the predissociation of HNO - a theoretical calculation,” Chem. Phys. Lett., 76 (1980) 169-71.
Cioslowski89J. Cioslowski, “A New Population Analysis Based on Atomic Polar Tensors,” J. Am. Chem. Soc., 111 (1989) 8333-36.
Cizek69J. Cížek, in Advances in Chemical Physics, Ed. P. C. Hariharan, Vol. 14 (Wiley Interscience, New York, 1969) 35.
Clabo88D. A. Clabo, W. D. Allen, R. B. Remington, Y. Yamaguchi, and H. F. Schaefer III, “A systematic study of molecular vibrational anharmonicity and vibration-rotation interaction by self-consistent-field higher-derivative methods - asymmetric-top molecules,” Chem. Phys., 123 (1988) 187-239.
Clark83T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. v. R. Schleyer, “Efficient diffuse function-augmented basis-sets for anion calculations. 3. The 3-21+G basis set for 1st-row elements, Li-F,” J. Comp. Chem., 4 (1983) 294-301.
Clemente10 F. Clemente, T. Vreven, and M. J. Frisch, in Quantum Biochemistry, Ed. C. Matta (Wiley VCH, Weinheim, 2010) 61-84.
Clifford96S. Clifford, M. J. Bearpark, and M. A. Robb, “A hybrid MC-SCF method: Generalized valence bond (GVB) with complete active space SCF (CASSCF),” Chem. Phys. Lett., 255 (1996) 320-26.
Cohen01A. J. Cohen and N. C. Handy, “Dynamic correlation,” Mol. Phys., 99 (2001) 607-15.
Cohen86E. R. Cohen and B. N. Taylor, The 1986 Adjustment of the Fundamental Physical Constants, CODATA Bulletin (Pergamon, Elmsford, NY, 1986).
Collins76J. B. Collins, P. v. R. Schleyer, J. S. Binkley, and J. A. Pople, “Self-Consistent Molecular Orbital Methods. 17. Geometries and binding energies of second-row molecules. A comparison of three basis sets,” J. Chem. Phys., 64 (1976) 5142-51.
Collins02M. A. Collins, “Molecular potential-energy surfaces for chemical reaction dynamics,” Theor. Chem. Acc., 108 (2002) 313-24.
Condon37E. U. Condon, “Theories of optical rotatory power,” Rev. Mod. Phys., 9 (1937) 432-57.
Constyear73Pure and Applied Chemistry, 2 (1973) 717.
Constyear79Pure and Applied Chemistry, 51 (1979) 1.
Cornell95W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, “A second generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules,” J. Am. Chem. Soc., 117 (1995) 5179-97.
Cossi00M. Cossi and V. Barone, “Solvent effect on vertical electronic transitions by the polarizable continuum model,” J. Chem. Phys., 112 (2000) 2427-35.
Cossi01M. Cossi and V. Barone, “Time-dependent density functional theory for molecules in liquid solutions,” J. Chem. Phys., 115 (2001) 4708-17.
Cossi01aM. Cossi, N. Rega, G. Scalmani, and V. Barone, “Polarizable dielectric model of solvation with inclusion of charge penetration effects,” J. Chem. Phys., 114 (2001) 5691-701.
Cossi02M. Cossi, G. Scalmani, N. Rega, and V. Barone, “New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution,” J. Chem. Phys., 117 (2002) 43-54.
Cossi03M. Cossi, N. Rega, G. Scalmani, and V. Barone, “Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model,” J. Comp. Chem., 24 (2003) 669-81.
Cossi96M. Cossi, V. Barone, R. Cammi, and J. Tomasi, “Ab initio study of solvated molecules: A new implementation of the polarizable continuum model,” Chem. Phys. Lett., 255 (1996) 327-35.
Cossi98M. Cossi, V. Barone, B. Mennucci, and J. Tomasi, “Ab initio study of ionic solutions by a polarizable continuum dielectric model,” Chem. Phys. Lett., 286 (1998) 253-60.
Cossi99M. Cossi, V. Barone, and M. A. Robb, “A direct procedure for the evaluation of solvent effects in MC-SCF calculations,” J. Chem. Phys., 111 (1999) 5295-302.
Coutsias04E. A. Coutsias, C. Seok, and K. A. Dill, “Using quaternions to calculate RMSD,” J. Comp. Chem., 25 (2004) 1849-57.
CRC80CRC Handbook of Chemistry and Physics, 60th ed., Ed. D. R. Lide (CRC Press, Boca Raton, FL, 1980).
Csaszar84P. Császár and P. Pulay, “Geometry optimization by direct inversion in the iterative subspace,” J. Mol. Struct. (Theochem), 114 (1984) 31-34.
Cundari93T. R. Cundari and W. J. Stevens, “Effective core potential methods for the lanthanides,” J. Chem. Phys., 98 (1993) 5555-65.
Curl65R. F. Curl Jr., “Relationship between Electron Spin Rotation Coupling Constants and G-Tensor Components,” Mol. Phys., 9 (1965) 585.
Curtiss07L. A. Curtiss, P. C. Redfern, and K. Raghavachari, “Gaussian-4 theory,” J. Chem. Phys., 126 (2007) 084108.
Curtiss07aL. A. Curtiss, P. C. Redfern, and K. Raghavachari, “Gaussian-4 theory using reduced order perturbation theory,” J. Chem. Phys., 127 (2007) 124105.
Curtiss90L. A. Curtiss, C. Jones, G. W. Trucks, K. Raghavachari, and J. A. Pople, “Gaussian-1 theory of molecular energies for second-row compounds,” J. Chem. Phys., 93 (1990) 2537-45.
Curtiss91L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, “Gaussian-2 theory for molecular energies of first- and second-row compounds,” J. Chem. Phys., 94 (1991) 7221-30.
Curtiss93L. A. Curtiss, K. Raghavachari, and J. A. Pople, “Gaussian-2 theory using reduced Møller-Plesset orders,” J. Chem. Phys., 98 (1993) 1293-98.
Curtiss95L. A. Curtiss, M. P. McGrath, J.-P. Blaudeau, N. E. Davis, R. C. Binning Jr., and L. Radom, “Extension of Gaussian-2 theory to molecules containing third-row atoms Ga-Kr,” J. Chem. Phys., 103 (1995) 6104-13.
Curtiss98L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, “Gaussian-3 (G3) theory for molecules containing first and second-row atoms,” J. Chem. Phys., 109 (1998) 7764-76.
Curtiss99L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, and J. A. Pople, “Gaussian-3 theory using reduced Møller-Plesset order,” J. Chem. Phys., 110 (1999) 4703-09.
daCosta87H. F. M. da Costa, M. Trsic, and J. R. Mohallem, “Universal Gaussian and Slater-type basis-sets for atoms He to Ar based on an integral version of the Hartree-Fock equations,” Mol. Phys., 62 (1987) 91-95.
Daniels97A. D. Daniels, J. M. Millam, and G. E. Scuseria, “Semiempirical methods with conjugate gradient density matrix search to replace diagonalization for molecular systems containing thousands of atoms,” J. Chem. Phys., 107 (1997) 425-31.
Dapprich99S. Dapprich, I. Komáromi, K. S. Byun, K. Morokuma, and M. J. Frisch, “A New ONIOM Implementation in Gaussian 98. 1. The Calculation of Energies, Gradients and Vibrational Frequencies and Electric Field Derivatives,” J. Mol. Struct. (Theochem), 462 (1999) 1-21.
daSilva89A. B. F. da Silva, H. F. M. da Costa, and M. Trsic, “Universal Gaussian and Slater-type bases for atoms H to Xe based on the generator-coordinate Hartree-Fock method .1. Ground and certain low-lying excited-states of the neutral atoms,” Mol. Phys., 68 (1989) 433-45.
Davidson96E. R. Davidson, “Comment on ‘Comment on Dunning's correlation-consistent basis sets’,” Chem. Phys. Lett., 260 (1996) 514-18.
Davis81L. P. Davis, et. al., “MNDO calculations for compounds containing aluminum and boron,” J. Comp. Chem., 2 (1981) 433-45.
deCastro98E. V. R. de Castro and F. E. Jorge, “Accurate universal gaussian basis set for all atoms of the periodic table,” J. Chem. Phys., 108 (1998) 5225-29.
deJong01W. A. deJong, R. J. Harrison, and D. A. Dixon, “Parallel Douglas-Kroll energy and gradients in NWChem: Estimating scalar relativistic effects using Douglas-Kroll contracted basis sets,” J. Chem. Phys., 114 (2001) 48-53.
Deng06W. Deng, J. R. Cheeseman, and M. J. Frisch, “Calculation of Nuclear Spin-Spin Coupling Constants of Molecules with First and Second Row Atoms in Study of Basis Set Dependence,” J. Chem. Theory and Comput., 2 (2006) 1028-37.
Dewar77M. J. S. Dewar and W. Thiel, “Ground-States of Molecules. 38. The MNDO Method: Approximations and Parameters,” J. Am. Chem. Soc., 99 (1977) 4899-907.
Dewar78M. J. S. Dewar and H. S. Rzepa, “Ground-states of molecules. 45. MNDO results for molecules containing beryllium,” J. Am. Chem. Soc., 100 (1978) 777-84.
Dewar78aM. J. S. Dewar, M. L. McKee, and H. S. Rzepa, “MNDO parameters for 3rd period elements,” J. Am. Chem. Soc., 100 (1978) 3607-07.
Dewar83M. J. S. Dewar and M. L. McKee, “Ground-states of molecules. 56. MNDO calculations for molecules containing sulfur,” J. Comp. Chem., 4 (1983) 84-103.
Dewar83aM. J. S. Dewar and E. F. Healy, “Ground-states of molecules. 64. MNDO calculations for compounds containing bromine,” J. Comp. Chem., 4 (1983) 542-51.
Dewar84M. J. S. Dewar, G. L. Grady, and J. J. P. Stewart, “Ground-states of molecules. 68. MNDO calculations for compounds containing tin,” J. Am. Chem. Soc., 106 (1984) 6771-73.
Dewar85M. J. S. Dewar, E. G. Zoebisch, and E. F. Healy, “AM1: A New General Purpose Quantum Mechanical Molecular Model,” J. Am. Chem. Soc., 107 (1985) 3902-09.
Dewar85aM. J. S. Dewar, et. al., “Ground-states of molecules. 74. MNDO calculations for compounds containing mercury,” Organometallics, 4 (1985) 1964-66.
Dewar86M. J. S. Dewar and C. H. Reynolds, “An improved set of MNDO parameters for sulfur,” J. Comp. Chem., 7 (1986) 140-43.
Dewar88M. J. S. Dewar, C. Jie, and E. G. Zoebisch, “AM1 calculations for compounds containing boron,” Organometallics, 7 (1988) 513-21.
Dewar88aM. J. S. Dewar and K. M. Merz Jr., “AM1 parameters for zinc,” Organometallics, 7 (1988) 522-24.
Dewar89M. J. S. Dewar and C. Jie, “AM1 parameters for phosphorus,” J. Mol. Struct. (Theochem), 187 (1989) 1.
Dewar90M. J. S. Dewar and Y.-C. Yuan, “AM1 parameters for sulfur,” Inorganic Chem., 29 (1990) 3881-90.
Dewar90aM. J. S. Dewar and A. J. Holder, “AM1 parameters for aluminum,” Organometallics, 9 (1990) 508-11.
Diercksen81G. H. F. Diercksen, B. O. Roos, and A. J. Sadlej, “Legitimate calculation of 1st-order molecular-properties in the case of limited CI functions - dipole-moments,” Chem. Phys., 59 (1981) 29-39.
Diercksen81aG. H. F. Diercksen and A. J. Sadlej, “Perturbation-theory of the electron correlation-effects for atomic and molecular-properties - 2nd-order and 3rd-order correlation corrections to molecular dipole-moments and polarizabilities,” J. Chem. Phys., 75 (1981) 1253-66.
Dierksen04M. Dierksen and S. Grimme, “Density functional calculations of the vibronic structure of electronic absorption spectra,” J. Chem. Phys., 120 (2004) 3544-54.
Dierksen04aM. Dierksen and S. Grimme, “The vibronic structure of electronic absorption spectra of large molecules: A time-dependent density functional study on the influence of ‘Exact‘ Hartree-Fock exchange,” J. Phys. Chem. A, 108 (2004) 10225-37.
Dierksen05M. Dierksen and S. Grimme, “An efficient approach for the calculation of Franck-Condon integrals of large molecules,” J. Chem. Phys., 122 (2005) 244101.
Ditchfield71R. Ditchfield, W. J. Hehre, and J. A. Pople, “Self-Consistent Molecular Orbital Methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules,” J. Chem. Phys., 54 (1971) 724.
Ditchfield74R. Ditchfield, “Self-consistent perturbation theory of diamagnetism. 1. Gauge-invariant LCAO method for N.M.R. chemical shifts,” Mol. Phys., 27 (1974) 789-807.
Dobbs86K. D. Dobbs and W. J. Hehre, “Molecular-orbital theory of the properties of inorganic and organometallic compounds. 4. Extended basis-sets for 3rd row and 4th row, main-group elements,” J. Comp. Chem., 7 (1986) 359-78.
Dobbs87K. D. Dobbs and W. J. Hehre, “Molecular-orbital theory of the properties of inorganic and organometallic compounds. 5. Extended basis-sets for 1st-row transition-metals,” J. Comp. Chem., 8 (1987) 861-79.
Dobbs87aK. D. Dobbs and W. J. Hehre, “Molecular-orbital theory of the properties of inorganic and organometallic compounds. 6. Extended basis-sets for 2nd-row transition-metals,” J. Comp. Chem., 8 (1987) 880-93.
Dodds77J. L. Dodds, R. McWeeny, W. T. Raynes, and J. P. Riley, “SCF theory for multiple perturbations,” Mol. Phys., 33 (1977) 611-17.
Dodds77aJ. L. Dodds, R. McWeeny, and A. J. Sadlej, “Self-consistent perturbation theory: Generalization for perturbation-dependent non-orthogonal basis set,” Mol. Phys., 34 (1977) 1779-91.
Doktorov77E. V. Doktorov, I. A. Malkin, and V. I. Manko, “Dynamical symmetry of vibronic transitions in polyatomic-molecules and Franck-Condon principle. 2. ,” J. Mol. Spec., 64 (1977) 302-26.
Dolg87M. Dolg, U. Wedig, H. Stoll, and H. Preuss, “Energy-adjusted ab initio pseudopotentials for the first row transition elements,” J. Chem. Phys., 86 (1987) 866-72.
Dolg89M. Dolg, H. Stoll, and H. Preuss, “Energy-adjusted ab initio pseudopotentials for the rare earth elements,” J. Chem. Phys., 90 (1989) 1730-34.
Dolg89aM. Dolg, H. Stoll, A. Savin, and H. Preuss, “Energy-adjusted pseudopotentials for the rare-earth elements,” Theor. Chem. Acc., 75 (1989) 173-94.
Dolg91M. Dolg, P. Fulde, W. Kuechle, C.-S. Neumann, and H. Stoll, “Ground state calculations of di-pi-cyclooctatetraene cerium,” J. Chem. Phys., 94 (1991) 3011-17.
Dolg92M. Dolg, H. Stoll, H.-J. Flad, and H. Preuss, “Ab initio pseudopotential study of Yb and YbO,” J. Chem. Phys., 97 (1992) 1162-73.
Dolg93M. Dolg, H. Stoll, and H. Preuss, “A combination of quasi-relativistic pseudopotential and ligand-field calculations for lanthanoid compounds,” Theor. Chem. Acc., 85 (1993) 441-50.
Dolg93aM. Dolg, H. Stoll, H. Preuss, and R. M. Pitzer, “Relativistic and correlation-effects for element 105 (Hahnium, Ha) - a comparative-study of M and MO (M = NB, TA, HA) using energy-adjusted ab initio pseudopotentials,” J. Phys. Chem., 97 (1993) 5852-59.
Douglas74M. Douglas and N. M. Kroll, “Quantum electrodynamical corrections to fine-structure of helium,” Ann. Phys. (NY), 82 (1974) 89-155.
Dukor00R. K. Dukor and L. A. Nafie, in Encyclopedia of Analytical Chemistry: Instrumentation and Applications, Ed. R. A. Meyers (Wiley & Sons, Chichester, 2000) 662-76.
Dunlap00B. I. Dunlap, “Robust and variational fitting: Removing the four-center integrals from center stage in quantum chemistry,” J. Mol. Struct. (Theochem), 529 (2000) 37-40.
Dunlap83B. I. Dunlap, “Fitting the Coulomb Potential Variationally in X-Alpha Molecular Calculations,” J. Chem. Phys., 78 (1983) 3140-42.
Dunning77 T. H. Dunning Jr. and P. J. Hay, in Modern Theoretical Chemistry, Ed. H. F. Schaefer III, Vol. 3 (Plenum, New York, 1977) 1-28.
Dunning89T. H. Dunning Jr., “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen,” J. Chem. Phys., 90 (1989) 1007-23.
Dupuis76M. Dupuis, J. Rys, and H. F. King, “Evaluation of molecular integrals over Gaussian basis functions,” J. Chem. Phys., 65 (1976) 111-16.
Dykstra77C. E. Dykstra, “Examination of Brueckner condition for selection of molecular-orbitals in correlated wavefunctions,” Chem. Phys. Lett., 45 (1977) 466-69.
Dykstra84C. E. Dykstra and P. G. Jasien, “Derivative Hartree-Fock theory to all orders,” Chem. Phys. Lett., 109 (1984) 388-93.
Eade81R. H. A. Eade and M. A. Robb, “Direct minimization in MC SCF theory - the Quasi-Newton method,” Chem. Phys. Lett., 83 (1981) 362-68.
Easton96R. E. Easton, D. J. Giesen, A. Welch, C. J. Cramer, and D. G. Truhlar, “The MIDI! basis set for quantum mechanical calculations of molecular geometries and partial charges,” Theor. Chem. Acc., 93 (1996) 281-301.
Ehara02M. Ehara, M. Ishida, K. Toyota, and H. Nakatsuji, in Reviews in Modern Quantum Chemistry, Ed. K. D. Sen (World Scientific, Singapore, 2002) 293.
Eichkorn95K. Eichkorn, O. Treutler, H. Ohm, M. Haser, and R. Ahlrichs, “Auxiliary basis-sets to approximate Coulomb potentials,” Chem. Phys. Lett., 240 (1995) 283-89.
Eichkorn97K. Eichkorn, F. Weigend, O. Treutler, and R. Ahlrichs, “Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials,” Theor. Chem. Acc., 97 (1997) 119-24.
Elstner98M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, “Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties,” Phys. Rev. B, 58 (1998) 7260-68.
Ernzerhof98M. Ernzerhof and J. P. Perdew, “Generalized gradient approximation to the angle- and system-averaged exchange hole,” J. Chem. Phys., 109 (1998).
Eyring35H. Eyring, “The activated complex in chemical reactions,” J. Chem. Phys., 3 (1935) 107-15.
Eyring44H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry (Wiley, New York, 1944).
Farkas95Ö. Farkas, PhD (CsC) thesis, Eötvös Loránd University and Hungarian Academy of Sciences, Budapest, 1995 (in Hungarian).
Farkas98Ö. Farkas and H. B. Schlegel, “Methods for geometry optimization of large molecules. I. An O(N2) algorithm for solving systems of linear equations for the transformation of coordinates and forces,” J. Chem. Phys., 109 (1998) 7100-04.
Farkas99Ö. Farkas and H. B. Schlegel, “Methods for optimizing large molecules. II. Quadratic search,” J. Chem. Phys., 111 (1999) 10806-14.
Ferreira01A. M. Ferreira, G. Seabra, O. Dolgounitcheva, V. G. Zakrzewski, and J. V. Ortiz, in Quantum-Mechanical Prediction of Thermochemical Data, Ed. J. Cioslowski, Understanding Chemical Reactivity, Vol. 22 (Kluwer Academic, Dordrecht, 2001) 131-60.
Fitzpatrick86N. J. Fitzpatrick and G. H. Murphy, “Double Zeta-D Radial Wave-Functions for Transition-Elements,” Inorg. Chim. Acta, 111 (1986) 139-40.
Fletcher63R. Fletcher and M. J. D. Powell, “A Rapidly Convergent Descent Method for Minimization,” Comput. J., 6 (1963) 163-68.
Fletcher80R. Fletcher, Practical Methods of Optimization (Wiley, New York, 1980).
Floris89F. Florsi and J. Tomasi, “Evaluation of the dispersion contribution to the solvation energy. A simple computational model in the continuum approximation,” J. Comp. Chem., 10 (1989) 616.
Floris91F. Florsi, J. Tomasi, and J. L. Pascual-Ahuir, “Dispersion and repulsion contributions to the solvation energy: Refinements to a simple computational model in the continuum approximation,” J. Comp. Chem., 12 (1991) 784.
Fogarasi92G. Fogarasi, X. Zhou, P. Taylor, and P. Pulay, “The calculation of ab initio molecular geometries: Efficient optimization by natural internal coordinates and empirical correction by offset forces,” J. Am. Chem. Soc., 114 (1992) 8191-201.
Foresman92J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, “Toward a Systematic Molecular Orbital Theory for Excited States,” J. Phys. Chem., 96 (1992) 135-49.
Foresman93J. B. Foresman and H. B. Schlegel, in Recent experimental and computational advances in molecular spectroscopy, Ed. R. Fausto and J. M. Hollas, NATO-ASI Series C, vol. 406 (Kluwer Academic, The Netherlands, 1993) 11-26.
Foresman96J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian, and M. J. Frisch, “Solvent Effects 5. The Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on ab initio Reaction Field Calculations,” J. Phys. Chem., 100 (1996) 16098-104.
Foresman96bJ. B. Foresman and Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed. (Gaussian, Inc., Pittsburgh, PA, 1996).
Foster60J. M. Foster and S. F. Boys, “Canonical configurational interaction procedure,” Rev. Mod. Phys., 32 (1960) 300-02.
Foster80J. P. Foster and F. Weinhold, “Natural hybrid orbitals,” J. Am. Chem. Soc., 102 (1980) 7211-18.
Francl82M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, D. J. DeFrees, J. A. Pople, and M. S. Gordon, “Self-Consistent Molecular Orbital Methods. 23. A polarization-type basis set for 2nd-row elements,” J. Chem. Phys., 77 (1982) 3654-65.
Frauenheim00T. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Porezag, S. Suhai, and R. Scholz, “A self-consistent charge density-functional based tight-binding method for predictive materials simulations in physics, chemistry and biology,” Physica Stat. Sol. B, 217 (2000) 41-62.
Frauenheim02T. Frauenheim, G. Seifert, M. Elstner, T. Niehaus, C. Kohler, M. Amkreutz, M. Sternberg, Z. Hajnal, A. D. Carlo, and S. Suhai, “Atomistic simulations of complex materials: ground-state and excited-state properties,” J. Phys.: Condens. Matter, 14 (2002) 3015-47.
Frisch09M. J. Frisch, G. Scalmani, T. Vreven, and G. Zheng, “Analytic second derivatives for semiempirical models based on MNDO,” (for Mol. Phys.), (2009).
Frisch84M. J. Frisch, J. A. Pople, and J. S. Binkley, “Self-Consistent Molecular Orbital Methods. 25. Supplementary Functions for Gaussian Basis Sets,” J. Chem. Phys., 80 (1984) 3265-69.
Frisch86aM. J. Frisch, Y. Yamaguchi, J. Gaw, H. F. Schaefer III, and J. S. Binkley, “Analytic Raman intensities from molecular electronic wave functions,” J. Chem. Phys., 84 (1986) 531-32.
Frisch90aM. J. Frisch, M. Head-Gordon, and J. A. Pople, “Direct analytic SCF second derivatives and electric field properties,” Chem. Phys., 141 (1990) 189-96.
Frisch90bM. J. Frisch, M. Head-Gordon, and J. A. Pople, “Direct MP2 gradient method,” Chem. Phys. Lett., 166 (1990) 275-80.
Frisch90cM. J. Frisch, M. Head-Gordon, and J. A. Pople, “Semi-direct algorithms for the MP2 energy and gradient,” Chem. Phys. Lett., 166 (1990) 281-89.
Frisch92M. J. Frisch, I. N. Ragazos, M. A. Robb, and H. B. Schlegel, “An Evaluation of 3 Direct MC-SCF Procedures,” Chem. Phys. Lett., 189 (1992) 524-28.
Fuentealba82P. Fuentealba, H. Preuss, H. Stoll, and L. v. Szentpály, “A Proper Account of Core-polarization with Pseudopotentials - Single Valence-Electron Alkali Compounds,” Chem. Phys. Lett., 89 (1982) 418-22.
Fuentealba83P. Fuentealba, H. Stoll, L. v. Szentpály, P. Schwerdtfeger, and H. Preuss, “On the reliability of semi-empirical pseudopotentials - simulation of Hartree-Fock and Dirac-Fock results,” J. Phys. B, 16 (1983) L323-L28.
Fuentealba85P. Fuentealba, L. v. Szentpály, H. Preuss, and H. Stoll, “Pseudopotential calculations for alkaline-earth atoms,” J. Phys. B, 18 (1985) 1287-96.
Fukui81K. Fukui, “The path of chemical-reactions - The IRC approach,” Acc. Chem. Res., 14 (1981) 363-68.
Furche02F. Furche and R. Ahlrichs, “Adiabatic time-dependent density functional methods for excited state properties,” J. Chem. Phys., 117 (2002) 7433-47.
Fukuda08R. Fukuda, H. Nakatsuji, “Formulation and implementation of direct algorithm for the symmetry adapted cluster and symmetry adapted cluster-configuration interaction method,” J. Chem. Phys., 128 (2008) 094105.
G03M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Rob, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03 (Gaussian, Inc., Wallingford, CT, 2003).
G70W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton, and J. A. Pople, Gaussian 70 (Quantum Chemistry Program Exchange, Program No. 237, 1970).
G76J. S. Binkley, R. A. Whiteside, P. C. Hariharan, R. Seeger, J. A. Pople, W. J. Hehre, and M. D. Newton, Gaussian 76 (Carnegie-Mellon University, Pittsburgh, PA, 1976).
G80J. S. Binkley, R. A. Whiteside, R. Krishnan, R. Seeger, D. J. Defrees, H. B. Schlegel, S. Topiol, L. R. Kahn, and J. A. Pople, Gaussian 80 (Carnegie-Mellon Quantum Chemistry Publishing Unit, Pittsburgh, PA, 1980).
G82J. S. Binkley, M. J. Frisch, D. J. Defrees, R. Krishnan, R. A. Whiteside, H. B. Schlegel, E. M. Fluder, and J. A. Pople, Gaussian 82 (Carnegie-Mellon Quantum Chemistry Publishing Unit, Pittsburgh, PA, 1982).
G86M. J. Frisch, J. S. Binkley, H. B. Schlegel, K. Raghavachari, C. F. Melius, R. L. Martin, J. J. P. Stewart, F. W. Bobrowicz, C. M. Rohlfing, L. R. Kahn, D. J. Defrees, R. Seeger, R. A. Whiteside, D. J. Fox, E. M. Fluder, and J. A. Pople, Gaussian 86 (Gaussian, Inc., Pittsburgh, PA, 1986).
G88M. J. Frisch, M. Head-Gordon, H. B. Schlegel, K. Raghavachari, J. S. Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, L. R. Kahn, J. J. P. Stewart, E. M. Fluder, S. Topiol, and J. A. Pople, Gaussian 88 (Gaussian, Inc., Pittsburgh, PA, 1988).
G90M. J. Frisch, M. Head-Gordon, G. W. Trucks, J. B. Foresman, K. Raghavachari, H. B. Schlegel, M. Robb, J. S. Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, L. R. Kahn, J. J. P. Stewart, E. M. Fluder, S. Topiol, and J. A. Pople, Gaussian 90 (Gaussian, Inc., Pittsburgh, PA, 1990).
G92M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, Gaussian 92 (Gaussian, Inc., Pittsburgh, PA, 1992).
G92DFTM. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. W. Wong, J. B. Foresman, M. A. Robb, M. Head-Gordon, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, Gaussian 92/DFT (Gaussian, Inc., Pittsburgh, PA, 1993).
G94M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery Jr., K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian 94 (Gaussian, Inc., Pittsburgh, PA, 1995).
G98M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98 (Gaussian, Inc., Pittsburgh, PA, 1998).
Garrett80B. C. Garrett, D. G. Truhlar, R. S. Grev, and A. W. Magnusson, “Improved treatment of threshold contributions in variational transition-state theory,” J. Phys. Chem., 84 (1980) 1730-48.
Gauss88J. Gauss and D. Cremer, “Analytical evaluation of energy gradients in quadratic configuration-interaction theory,” Chem. Phys. Lett., 150 (1988) 280-86.
Gauss92J. Gauss, “Calculation of NMR chemical shifts at second-order many-body perturbation theory using gauge-including atomic orbitals,” Chem. Phys. Lett., 191 (1992) 614-20.
Gauss93J. Gauss, “Effects of Electron Correlation in the Calculation of Nuclear- Magnetic-Resonance Chemical-Shifts,” J. Chem. Phys., 99 (1993) 3629-43.
Gauss95J. Gauss, “Accurate Calculation of NMR Chemical-Shifts,” Phys. Chem. Chem. Phys., 99 (1995) 1001-08.
Gauss96J. Gauss, K. Ruud, and T. Helgaker, “Perturbation-dependent atomic orbitals for the calculation of spin-rotation constants and rotational g tensors,” J. Chem. Phys., 105 (1996) 2804-12.
Gerratt68J. Gerratt and I. M. Mills, “Force constants and dipole-moment derivatives of molecules from perturbed Hartree-Fock calculations. I.,” J. Chem. Phys., 49 (1968) 1719.
Gill92P. M. W. Gill, B. G. Johnson, J. A. Pople, and M. J. Frisch, “The performance of the Becke-Lee-Yang-Parr (B-LYP) density functional theory with various basis sets,” Chem. Phys. Lett., 197 (1992) 499-505.
Gill94P. M. W. Gill, in Advances in Quantum Chemistry, Vol. 25 (Academic Press, San Diego, CA, 1994) 141-205.
Gill96P. M. W. Gill, “A new gradient-corrected exchange functional,” Mol. Phys., 89 (1996) 433-45.
Godbout92N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, “Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation,” Can. J. Chem., 70 (1992) 560-71.
Goddard78W. A. Goddard III and L. B. Harding, in Annual Review of Physical Chemistry, Ed. B. S. Rabinovitch, Vol. 29 (Annual Reviews, Inc., Palo Alto, CA, 1978) 363-96.
Goerigk11 L. Goerigk and S. Grimme, “Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals—Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions,” J. Chem. Theory Comput., 7 (2011) 291-309.
Golab83J. T. Golab, D. L. Yeager, and P. Jørgensen, “Proper characterization of MC SCF stationary-points,” Chem. Phys., 78 (1983) 175-99.
Gonzalez89C. Gonzalez and H. B. Schlegel, “An Improved Algorithm for Reaction Path Following,” J. Chem. Phys., 90 (1989) 2154-61.
Gonzalez90C. Gonzalez and H. B. Schlegel, “Reaction Path Following in Mass-Weighted Internal Coordinates,” J. Phys. Chem., 94 (1990) 5523-27.
Gordon80M. S. Gordon, “The isomers of silacyclopropane,” Chem. Phys. Lett., 76 (1980) 163-68.
Gordon82M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, and W. J. Hehre, “Self-Consistent Molecular Orbital Methods. 22. Small Split-Valence Basis Sets for Second-Row Elements,” J. Am. Chem. Soc., 104 (1982) 2797-803.
Gready77J. E. Gready, G. B. Bacskay, and N. S. Hush, “Finite-field Method Calculations. III. Dipole moment gradients, polarisability gradients and field-induced shifts in bond lengths, vibrational levels, spectroscopic constants and dipole functions -- Application to LiH,” Chem. Phys., 24 (1977) 333-41.
Greengard87L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” J. Comp. Phys., 73 (1987) 325-48.
Greengard88L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems (MIT Press, Cambridge, MA, 1988).
Greengard94L. Greengard, “Fast algorithms for classical physics,” Science, 265 (1994) 909-14.
Grimme06S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comp. Chem., 27 (2006) 1787-99.
Grimme06a S. Grimme, “Semiempirical hybrid density functional with perturbative second-order correlation,” J. Chem. Phys., 124 (2006) 034108.
Grimme10 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, “A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,” J. Chem. Phys., 132 (2010) 154104.
Grimme11 S. Grimme, S. Ehrlich and L. Goerigk, “Effect of the damping function in dispersion corrected density functional theory,” J. Comp. Chem. 32 (2011) 1456-65.
Haeussermann93U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss, “Accuracy of energy-adjusted quasi-relativistic ab initio pseudopotentials - all-electron and pseudopotential benchmark calculations for HG, HGH and their cations,” Mol. Phys., 78 (1993) 1211-24.
Halgren77T. A. Halgren and W. N. Lipscomb, “The Synchronous Transit Method for Determining Reaction Pathways and Locating Transition States,” Chem. Phys. Lett., 49 (1977) 225-32.
Hall84G. G. Hall and C. M. Smith, “Fitting electron-densities of molecules,” Int. J. Quantum Chem., 25 (1984) 881-90.
Hamilton88T. P. Hamilton and P. Pulay, “UHF natural orbitals for defining and starting MC-SCF calculations,” J. Chem. Phys., 88 (1988) 4926-33.
Hamprecht98F. A. Hamprecht, A. Cohen, D. J. Tozer, and N. C. Handy, “Development and assessment of new exchange-correlation functionals,” J. Chem. Phys., 109 (1998) 6264-71.
Handy01N. C. Handy and A. J. Cohen, “Left-right correlation energy,” Mol. Phys., 99 (2001) 403-12.
Handy84N. C. Handy and H. F. Schaefer III, “On the evaluation of analytic energy derivatives for correlated wave-functions,” J. Chem. Phys., 81 (1984) 5031-33.
Handy89N. C. Handy, J. A. Pople, M. Head-Gordon, K. Raghavachari, and G. W. Trucks, “Size-consistent Brueckner theory limited to double substitutions,” Chem. Phys. Lett., 164 (1989) 185-92.
Hansen99A. E. Hansen and K. L. Bak, “Ab initio calculations of electronic circular dichroism,” ENANTIOMER, 4 (1999) 455-76.
Hanson87L. K. Hanson, J. Fajer, M. A. Thompson, and M. C. Zerner, “Electrochromic Effects of Charge Separation in Bacterial Photosynthesis - Theoretical Models,” J. Am. Chem. Soc., 109 (1987) 4728-30.
Hariharan73P. C. Hariharan and J. A. Pople, “Influence of polarization functions on molecular-orbital hydrogenation energies,” Theor. Chem. Acc., 28 (1973) 213-22.
Hariharan74P. C. Hariharan and J. A. Pople, “Accuracy of AH equilibrium geometries by single determinant molecular-orbital theory,” Mol. Phys., 27 (1974) 209-14.
Harris85J. Harris, “Simplified method for calculating the energy of weakly interacting fragments,” Phys. Rev. B, 31 (1985) 1770-79.
Hase91Advances in Classical Trajectory Methods, Vol. 1-3, Ed. W. L. Hase (JAI, Stamford, CT, 1991).
Hase96W. L. Hase, R. J. Duchovic, X. Hu, A. Komornicki, K. F. Lim, D.-H. Lu, G. H. Peslherbe, K. N. Swamy, S. R. V. Linde, A. Varandas, H. Wang, and R. J. Wolfe, “VENUS96: A General Chemical Dynamics Computer Program,” QCPE, 16 (1996) 671.
Hay77P. J. Hay, “Gaussian basis sets for molecular calculations - representation of 3D orbitals in transition-metal atoms,” J. Chem. Phys., 66 (1977) 4377-84.
Hay85P. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calculations - potentials for the transition-metal atoms Sc to Hg,” J. Chem. Phys., 82 (1985) 270-83.
Hay85aP. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calculations - potentials for K to Au including the outermost core orbitals,” J. Chem. Phys., 82 (1985) 299-310.
Head-Gordon88M. Head-Gordon and J. A. Pople, “A Method for Two-Electron Gaussian Integral and Integral Derivative Evaluation Using Recurrence Relations,” J. Chem. Phys., 89 (1988) 5777-86.
Head-Gordon88aM. Head-Gordon, J. A. Pople, and M. J. Frisch, “MP2 energy evaluation by direct methods,” Chem. Phys. Lett., 153 (1988) 503-06.
Head-Gordon94M. Head-Gordon and T. Head-Gordon, “Analytic MP2 Frequencies Without Fifth Order Storage: Theory and Application to Bifurcated Hydrogen Bonds in the Water Hexamer,” Chem. Phys. Lett., 220 (1994) 122-28.
Head-Gordon94aM. Head-Gordon, R. J. Rico, M. Oumi, and T. J. Lee, “A Doubles Correction to Electronic Excited-States from Configuration-Interaction in the Space of Single Substitutions,” Chem. Phys. Lett., 219 (1994) 21-29.
Head-Gordon95M. Head-Gordon, D. Maurice, and M. Oumi, “A Perturbative Correction to Restricted Open-Shell Configuration-Interaction with Single Substitutions for Excited-States of Radicals,” Chem. Phys. Lett., 246 (1995) 114-21.
Hegarty79D. Hegarty and M. A. Robb, “Application of unitary group-methods to configuration-interaction calculations,” Mol. Phys., 38 (1979) 1795-812.
Hehre69W. J. Hehre, R. F. Stewart, and J. A. Pople, “Self-Consistent Molecular Orbital Methods. 1. Use of Gaussian expansions of Slater-type atomic orbitals,” J. Chem. Phys., 51 (1969) 2657-64.
Hehre72W. J. Hehre, R. Ditchfield, and J. A. Pople, “Self-Consistent Molecular Orbital Methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules,” J. Chem. Phys., 56 (1972) 2257.
Helgaker00T. Helgaker, M. Watson, and N. C. Handy, “Analytical calculation of nuclear magnetic resonance indirect spin-spin coupling constants at the generalized gradient approximation and hybrid levels of density-functional theory,” J. Chem. Phys., 113 (2000) 9402-09.
Helgaker90T. Helgaker, E. Uggerud, and H. J. A. Jensen, “Integration of the Classical Equations of Motion on ab initio Molecular-Potential Energy Surfaces Using Gradients and Hessians - Application to Translational Energy-Release Upon Fragmentation,” Chem. Phys. Lett., 173 (1990) 145-50.
Helgaker91T. Helgaker and P. Jørgensen, “An Electronic Hamiltonian for Origin Independent Calculations of Magnetic-Properties,” J. Chem. Phys., 95 (1991) 2595-601.
Helgaker94T. Helgaker, K. Ruud, K. L. Bak, P. Jørgensen, and J. Olsen, “Vibrational Raman Optical-Activity Calculations Using London Atomic Orbitals,” Faraday Discuss., 99 (1994) 165-80.
Henderson08 T. M. Henderson, A. F. Izmaylov, G. E. Scuseria and A. Savin, “Assessment of a middle range hybrid functional,” J. Chem. Theory and Comput. 4 (2008) 1254.
Henderson09T. M. Henderson, A. F. Izmaylov, G. Scalmani, and G. E. Scuseria, “Can short-range hybrids describe long-range-dependent properties?,” J. Chem. Phys., 131 (2009) 044108.
Herzberg33G. Herzberg and E. Teller, “Fluctuation structure of electron transfer in multiatomic molecules,” Z. Phys. Chemie, 21 (1933) 410.
Hess85B. A. Hess, “Applicability of the no-pair equation with free-particle projection operators to atomic and molecular-structure calculations,” Phys. Rev. A, 32 (1985) 756-63.
Hess86B. A. Hess, “Relativistic electronic-structure calculations employing a 2-component no-pair formalism with external-field projection operators,” Phys. Rev. A, 33 (1986) 3742-48.
Heyd03J. Heyd, G. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys., 118 (2003) 8207-15.
Heyd04J. Heyd and G. Scuseria, “Efficient hybrid density functional calculations in solids: The HS-Ernzerhof screened Coulomb hybrid functional,” J. Chem. Phys., 121 (2004) 1187-92.
Heyd04aJ. Heyd and G. E. Scuseria, “Assessment and validation of a screened Coulomb hybrid density functional,” J. Chem. Phys., 120 (2004) 7274.
Heyd05J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, “Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional,” J. Chem. Phys., 123 (2005) 174101: 1-8.
Heyd06J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Erratum: ‘Hybrid functionals based on a screened Coulomb potential’,” J. Chem. Phys., 124 (2006) 219906.
Hirota85E. Hirota, High-Resolution Spectroscopy of Transient Molecules, Springer Series in Chemical Physics, Vol. 40 (Springer-Verlag, Berlin, 1985).
Hirota94E. Hirota, J. M. Brown, J. T. Hougen, T. Shida, and N. Hirota, “Symbols for fine and hyperfine-structure parameters,” Pure & Appl. Chem., 66 (1994) 571-76.
Hirshfeld77F. L. Hirshfeld, “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acc., 44 (1977) 129-38.
Hoe01W.-M. Hoe, A. Cohen, and N. C. Handy, “Assessment of a new local exchange functional OPTX,” Chem. Phys. Lett., 341 (2001) 319-28.
Hoffmann63R. Hoffmann, “An Extended Huckel Theory. I. Hydrocarbons,” J. Chem. Phys., 39 (1963) 1397.
Hoffmann64R. Hoffmann, “An Extended Huckel Theory. II. Sigma Orbitals in the Azines,” J. Chem. Phys., 40 (1964) 2745.
Hoffmann64aR. Hoffmann, “An Extended Huckel Theory. III. Compounds of Boron and Nitrogen,” J. Chem. Phys., 40 (1964) 2474.
Hoffmann64bR. Hoffmann, “An Extended Huckel Theory. IV. Carbonium Ions,” J. Chem. Phys., 40 (1964) 2480.
Hoffmann66R. Hoffmann, “Extended Huckel Theory. V. Cumulenes, Polyenes, Polyacetylenes and Cn,” Tetrahedron, 22 (1966) 521.
Hohenberg64P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., 136 (1964) B864-B71.
Hratchian02H. P. Hratchian and H. B. Schlegel, “Following reaction pathways using a damped classical trajectory algorithm,” J. Phys. Chem. A, 106 (2002) 165-69.
Hratchian04aH. P. Hratchian and H. B. Schlegel, “Accurate reaction paths using a Hessian based predictor-corrector integrator,” J. Chem. Phys., 120 (2004) 9918-24.
Hratchian05aH. P. Hratchian and H. B. Schlegel, in Theory and Applications of Computational Chemistry: The First 40 Years, Ed. C. E. Dykstra, G. Frenking, K. S. Kim, and G. Scuseria (Elsevier, Amsterdam, 2005) 195-249.
Hratchian05bH. P. Hratchian and H. B. Schlegel, “Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method,” J. Chem. Theory and Comput., 1 (2005) 61-69.
Hu07 H. Hu, Z. Lu and W. Yang, “Fitting Molecular Electrostatic Potentials from Quantum Mechanical Calculations,” J. Chem. Theory and Comput. 3 (2007) 1004-13.
Humbel96S. Humbel, S. Sieber, and K. Morokuma, “The IMOMO method: Integration of different levels of molecular orbital approximations for geometry optimization of large systems: Test for n-butane conformation and SN2 reaction: RCI+Cl-,” J. Chem. Phys., 105 (1996) 1959-67.
Igel-Mann88G. Igel-Mann, H. Stoll, and H. Preuss, “Pseudopotentials for main group elements (IIIA through VIIA),” Mol. Phys., 65 (1988) 1321-28.
Iikura01H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, “Long-range correction scheme for generalized-gradient-approximation exchange functionals,” J. Chem. Phys., 115 (2001) 3540-44.
Improta06R. Improta, V. Barone, G. Scalmani, and M. J. Frisch, “A state-specific polarizable continuum model time dependent density functional method for excited state calculations in solution,” J. Chem. Phys., 125 (2006) 054103: 1-9.
Improta07R. Improta, G. Scalmani, M. J. Frisch, and V. Barone, “Toward effective and reliable fluorescence energies in solution by a new State Specific Polarizable Continuum Model Time Dependent Density Functional Theory Approach,” J. Chem. Phys., 127 (2007) 074504: 1-9.
Ishida01M. Ishida, K. Toyota, M. Ehara, and H. Nakatsuji, “Analytical energy gradients of the excited, ionized and electron-attached states calculated by the SAC-CI general-R method,” Chem. Phys. Lett., 347 (2001) 493-98.
Ishida01aM. Ishida, K. Toyota, M. Ehara, and H. Nakatsuji, “Analytical energy gradient of high-spin multiplet state calculated by the SAC-CI method,” Chem. Phys. Lett., 350 (2001) 351-58.
Iyengar01S. S. Iyengar, H. B. Schlegel, J. M. Millam, G. A. Voth, G. E. Scuseria, and M. J. Frisch, “Ab initio molecular dynamics: Propagating the density matrix with Gaussian orbitals. II. Generalizations based on mass-weighting, idempotency, energy conservation and choice of initial conditions,” J. Chem. Phys., 115 (2001) 10291-302.
Izmaylov06A. F. Izmaylov, G. Scuseria, and M. J. Frisch, “Efficient evaluation of short-range Hartree-Fock exchange in large molecules and periodic systems,” J. Chem. Phys., 125 (2006) 104103: 1-8.
Jankowiak07H.-C. Jankowiak, J. L. Stuber, and R. Berger, “Vibronic transitions in large molecular systems: rigorous prescreening conditions for Franck-Condon factors,” J. Chem. Phys., 127 (2007) 234101.
Jansen89G. Jansen and B. A. Hess, “Revision of the Douglas-Kroll transformation,” Phys. Rev. A, 39 (1989) 6016-17.
Johnson93B. G. Johnson, P. M. W. Gill, and J. A. Pople, “Computing Molecular Electrostatic Potentials with the PRISM Algorithm,” Chem. Phys. Lett., 206 (1993) 239-46.
Johnson93aB. G. Johnson and M. J. Frisch, “Analytic second derivatives of the gradient-corrected density functional energy: Effect of quadrature weight derivatives,” Chem. Phys. Lett., 216 (1993) 133-40.
Johnson94B. G. Johnson and M. J. Frisch, “An implementation of analytic second derivatives of the gradient-corrected density functional energy,” J. Chem. Phys., 100 (1994) 7429-42.
Jorge97F. E. Jorge, E. V. R. de Castro, and A. B. F. da Silva, “A universal Gaussian basis set for atoms Cerium through Lawrencium generated with the generator coordinate Hartree-Fock method,” J. Comp. Chem., 18 (1997) 1565-69.
Jorge97aF. E. Jorge, E. V. R. de Castro, and A. B. F. da Silva, “Accurate universal Gaussian basis set for hydrogen through lanthanum generated with the generator coordinate Hartree-Fock method,” Chem. Phys., 216 (1997) 317-21.
Jorgensen88P. Jørgensen, H. J. A. Jensen, and J. Olsen, “Linear Response Calculations for Large-Scale Multiconfiguration Self-Consistent Field Wave-Functions,” J. Chem. Phys., 89 (1988) 3654-61.
Kallay04M. Kállay and J. Gauss, “Calculation of excited-state properties using general coupled-cluster and configuration-interaction models,” J. Chem. Phys., 121 (2004) 9257.
Karna91S. P. Karna and M. Dupuis, “Frequency-Dependent Nonlinear Optical-Properties of Molecules - Formulation and Implementation in the Hondo Program,” J. Comp. Chem., 12 (1991) 487-504.
Kaupp91M. Kaupp, P. v. R. Schleyer, H. Stoll, and H. Preuss, “Pseudopotential approaches to CA, SR, and BA hydrides. Why are some alkaline-earth MX2 compounds bent?,” J. Chem. Phys., 94 (1991) 1360-66.
Keith92T. A. Keith and R. F. W. Bader, “Calculation of magnetic response properties using atoms in molecules,” Chem. Phys. Lett., 194 (1992) 1-8.
Keith93T. A. Keith and R. F. W. Bader, “Calculation of magnetic response properties using a continuous set of gauge transformations,” Chem. Phys. Lett., 210 (1993) 223-31.
Kendall92R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison, “Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions,” J. Chem. Phys., 96 (1992) 6796-806.
King76H. F. King and M. Dupuis, “Numerical Integration Using Rys Polynomials,” J. Comp. Phys., 21 (1976) 144-65.
Kirkwood34J. G. Kirkwood, “Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions,” J. Chem. Phys., 2 (1934) 351.
Klene00M. Klene, M. A. Robb, M. J. Frisch, and P. Celani, “Parallel implementation of the CI-vector evaluation in full CI/CAS-SCF,” J. Chem. Phys., 113 (2000) 5653-65.
Klene03M. Klene, M. A. Robb, L. Blancafort, and M. J. Frisch, “A New Efficient Approach to the Direct RASSCF Method,” J. Chem. Phys., 119 (2003) 713-28.
Knowles91P. J. Knowles, J. S. Andrews, R. D. Amos, N. C. Handy, and J. A. Pople, “Restricted Møller-Plesset theory for open shell molecules,” Chem. Phys. Lett., 186 (1991) 130-36.
Kobayashi91R. Kobayashi, N. C. Handy, R. D. Amos, G. W. Trucks, M. J. Frisch, and J. A. Pople, “Gradient theory applied to the Brueckner doubles method,” J. Chem. Phys., 95 (1991) 6723-33.
Koch90H. Koch and P. Jørgensen, “Coupled cluster response functions,” J. Chem. Phys., 93 (1990) 3333-44.
Koch94aH. Koch, R. Kobayashi, A. Sánchez de Merás, and P. Jørgensen, “Calculation of size-intensive transition moments from the coupled cluster singles and doubles linear response function,” J. Chem. Phys., 100 (1994) 4393.
Kohn65W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev., 140 (1965) A1133-A38.
Komornicki79A. Komornicki and R. L. Jaffe, “Ab initio investigation of the structure, vibrational frequencies, and intensities of HO2 and HOCl,” J. Chem. Phys., 71 (1979) 2150-55.
Kondru98R. K. Kondru, P. Wipf, and D. N. Beratan, “Theory-assisted determination of absolute stereochemistry for complex natural products via computation of molar rotation angles,” J. Am. Chem. Soc., 120 (1998) 2204-05.
Koseki92S. Koseki, M. W. Schmidt, and M. S. Gordon, “MCSCF/6-31G(d,p) calculations of one-electron spin-orbit-coupling constants in diatomic-molecules,” J. Phys. Chem., 96 (1992) 10768-72.
Koseki95S. Koseki, M. S. Gordon, M. W. Schmidt, and N. Matsunaga, “Main-group effective nuclear charges for spin-orbit calculations,” J. Phys. Chem., 99 (1995) 12764-72.
Koseki98S. Koseki, M. W. Schmidt, and M. S. Gordon, “Effective nuclear charges for the first- through third-row transition metal elements in spin-orbit calculations,” J. Phys. Chem. A, 102 (1998) 10430-35.
Krack98M. Krack and A. M. Köster, “An adaptive numerical integrator for molecular integrals,” J. Chem. Phys., 108 (1998) 3226-34.
Krieger01J. B. Krieger, J. Q. Chen, and S. Kurth, in Density Functional Theory and its Application to Materials, Ed. V. VanDoren, C. VanAlsenoy, and P. Geerlings, A.I.P. Conference Proceedings, Vol. 577 (A.I.P., New York, 2001) 48-69.
Krieger99J. B. Krieger, J. Q. Chen, G. J. Iafrate, and A. Savin, in Electron Correlations and Materials Properties, Ed. A. Gonis, N. Kioussis, and M. Ciftan (Kluwer Academic, New York, 1999) 463-77.
Krukau06A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals,” J. Chem. Phys., 125 (2006) 224106.
Kudin02K. N. Kudin, G. E. Scuseria, and E. Cancès, “A black-box self-consistent field convergence algorithm: One step closer,” J. Chem. Phys., 116 (2002) 8255-61.
Kuechle91W. Kuechle, M. Dolg, H. Stoll, and H. Preuss, “Ab initio pseudopotentials for HG through RN. 1. Parameter sets and atomic calculations,” Mol. Phys., 74 (1991) 1245-63.
Kuechle94W. Kuechle, M. Dolg, H. Stoll, and H. Preuss, “Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium molecules,” J. Chem. Phys., 100 (1994) 7535-42.
Kuhler96K. M. Kuhler, D. G. Truhlar and A. D. Isaacson, “General Method for Removing Resonance Singularities in Quantum Mechanical Perturbation Theory,” J. Chem. Phys., 104 (1996) 4664-4671.
Kupka86H. Kupka and P. H. Cribb, “Multidimensional Franck-Condon integrals and Duschinsky mixing effects,” J. Chem. Phys., 85 (1986) 1303-15.
Labanowski91Density Functional Methods in Chemistry, Ed. J. K. Labanowski and J. W. Andzelm (Springer-Verlag, New York, 1991).
Lami04A. Lami, C. Petrongolo, and F. Santoro, in Conical Intersections: Electronic Structure, Dynamics & Spectroscopy, Ed. W. Domcke, D. R. Yarkony, and H. Koppel (World Scientific, Singapore, 2004).
Lauderdale91W. J. Lauderdale, J. F. Stanton, J. Gauss, J. D. Watts, and R. J. Bartlett, “Many-body perturbation theory with a restricted open-shell Hartree-Fock reference,” Chem. Phys. Lett., 187 (1991).
Lauderdale92W. J. Lauderdale, J. F. Stanton, J. Gauss, J. D. Watts, and R. J. Bartlett, “Restricted open-shell Hartree-Fock based many-body perturbation theory: Theory and application of energy and gradient calculations,” J. Chem. Phys., 97 (1992).
Lebedev75V. I. Lebedev, “Weights and Nodes of Gauss-Markov Quadrature Formulas of Orders 9 to 17 for the Sphere that are Invariant under the Octahedron Group with Inversion,” Zh. Vychisl. Mat. Mat. Fiz., 15 (1975) 48-54.
Lebedev76V. I. Lebedev, “Quadratures on a Sphere,” Zh. Vychisl. Mat. Mat. Fiz., 16 (1976) 293-306.
Lebedev80V. I. Lebedev, in Theory of Cubature Formulas and Computational Mathematics, Ed. S. L. Sobolev (Nauka, Novosibirsk, 1980) 75-82 [in Russian].
Lebedev92V. I. Lebedev and L. Skorokhodov, “Quadrature formulas of orders 41,47 and 53 for the sphere,” Russian Acad. Sci. Dokl. Math., 45 (1992) 587-92.
Lee88C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B, 37 (1988) 785-89.
Lee89T. J. Lee and P. R. Taylor, “A diagnostic for determining the quality of single-reference electron correlation methods,” Int. J. Quantum Chem., Quant. Chem. Symp., S23 (1989) 199-207.
Lee90T. J. Lee, A. P. Rendell, and P. R. Taylor, “Comparison of the Quadratic Configuration Interaction and Coupled-Cluster Approaches to Electron Correlation Including the Effect of Triple Excitations,” J. Phys. Chem., 94 (1990) 5463-68.
Lehd91 M. Lehd and F. Jensen, “A General Procedure for Obtaining Wave Functions Obeying the Virial Theorem,” J. Comp. Chem.12 (1991) 1089-96.
Leininger96T. Leininger, A. Nicklass, H. Stoll, M. Dolg, and P. Schwerdtfeger, “The accuracy of the pseudopotential approximation. II. A comparison of various core sizes for indium pseudopotentials in calculations for spectroscopic constants of InH, InF, and InCI,” J. Chem. Phys., 105 (1996) 1052-59.
Li00X. Li, J. M. Millam, and H. B. Schlegel, “Ab initio molecular dynamics studies of the photodissociation of formaldehyde, H2CO → H2+CO: Direct classical trajectory calculations by MP2 and density functional theory,” J. Chem. Phys., 113 (2000) 10062-67.
Li06X. Li and M. J. Frisch, “Energy-represented DIIS within a hybrid geometry optimization method,” J. Chem. Theory and Comput., 2 (2006) 835-39.
Liang05J. Liang and H. Y. Li, “Calculation of the multimode Franck-Condon factors based on the coherent state method,” Mol. Phys., 103 (2005) 3337-42.
Lin74S. H. Lin and H. Eyring, “Study of Franck-Condon and Herzberg-Teller approximations,” Proceedings of the National Acad. of Sciences, 71 (1974) 3802-04.
Linderberg04J. Linderberg and Y. Öhrn, Propagators in Quantum Chemistry, 2nd ed. (Wiley & Sons, Hoboken, NJ, 2004).
Lippert97G. Lippert, J. Hutter, and M. Parrinello, “A hybrid Gaussian and plane wave density functional scheme,” Mol. Phys., 92 (1997) 477-87.
Lippert99G. Lippert, J. Hutter, and M. Parrinello, “The Gaussian and augmented-plane-wave density functional method for ab initio molecular dynamics simulations,” Theor. Chem. Acc., 103 (1999) 124-40.
London37F. London, “The quantic theory of inter-atomic currents in aromatic combinations,” J. Phys. Radium, 8 (1937) 397-409.
Lowdin59 P.-O. Löwdin, “Scaling Problem, Virial Theorem and Connected Relations in Quantum Mechanics,” J. Mol. Spec. 3 (1959) 44-66.
Lundberg09M. Lundberg, T. Kawatsu, T. Vreven, M. J. Frisch, and K. Morokuma, “Transition States in the Protein Environment -- ONIOM QM:MM Modeling of Isopenicillin N Synthesis,” J. Chem. Theory and Comput., 5 (2009) 222-34.
MacbethW. Shakespeare, Macbeth, III.iv.40-107 (London, c.1606-1611).
Magnoli82 D. E. Magnoli and J. R. Murdoch, “Obtaining self-consistent wave functions which satisfy the virial theorem,” Int. J. Quant. Chem. 22 (1982) 1249-62.
Malick98D. K. Malick, G. A. Petersson, and J. A. Montgomery Jr., “Transition states for chemical reactions. I. Geometry and classical barrier height,” J. Chem. Phys., 108 (1998) 5704-13.
Marenich09A. V. Marenich, C. J. Cramer, and D. G. Truhlar, “Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions,” J. Phys. Chem. B, 113 (2009) 6378-96.
Marenich12 A. V. Marenich, S. V. Jerome, C. J. Cramer and D. G. Truhlar, “Charge Model 5: An Extension of Hirshfeld Population Analysis for the Accurate Description of Molecular Interactions in Gaseous and Condensed Phases,” J. Chem. Theory and Comput. 8 (2012) 527.
Martin03R. L. Martin, “Natural transition orbitals,” J. Chem. Phys., 118 (2003) 4775-77.
Martin99J. M. L. Martin and G. de Oliveira, “Towards standard methods for benchmark quality ab initio thermochemistry - W1 and W2 theory,” J. Chem. Phys., 111 (1999) 1843-56.
Martyna91G. Martyna, C. Cheng, and M. L. Klein, “Electronic States and Dynamic Behavior of Lixen and Csxen Clusters,” J. Chem. Phys., 95 (1991) 1318-36.
Maseras95F. Maseras and K. Morokuma, “IMOMM - A new integrated ab-initio plus molecular mechanics geometry optimization scheme of equilibrium structures and transition-states,” J. Comp. Chem., 16 (1995) 1170-79.
Matsubara96T. Matsubara, S. Sieber, and K. Morokuma, “A Test of the New ‘Integrated MO + MM’ (IMOMM) Method for the Conformational Energy of Ethane and n-Butane,” Int. J. Quantum Chem., 60 (1996) 1101-09.
Mayo90S. L. Mayo, B. D. Olafson, and W. A. Goddard III, “Dreiding - A generic force-field for molecular simulations,” J. Phys. Chem., 94 (1990) 8897-909.
McClurg97R. B. McClurg, R. C. Flagan, and W. A. Goddard III, “The hindered rotor density-of-states interpolation function,” J. Chem. Phys., 106 (1997) 6675.
McClurg99R. B. McClurg, “Comment on: 'The hindered rotor density-of-states interpolation function' [J. Chem. Phys. 106, 6675 (1997)] and 'The hindered rotor density-of-states' [J. Chem. Phys. 108, 2314 (1998)],” J. Chem. Phys., 111 (1999) 7163.
McDouall88J. J. McDouall, K. Peasley, and M. A. Robb, “A Simple MC-SCF Perturbation Theory: Orthogonal Valence Bond Møller-Plesset 2 (OVB-MP2),” Chem. Phys. Lett., 148 (1988) 183-89.
McGrath91M. P. McGrath and L. Radom, “Extension of Gaussian-1 (G1) theory to bromine-containing molecules,” J. Chem. Phys., 94 (1991) 511-16.
McLaren63A. D. McLaren, “Optimal Numerical Integration on a Sphere,” Math. Comp., 17 (1963) 361-83.
McLean80A. D. McLean and G. S. Chandler, “Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18,” J. Chem. Phys., 72 (1980) 5639-48.
McQuarrie73D. A. McQuarrie, Statistical Thermodynamics (Harper and Row, New York, 1973).
McWeeny60R. McWeeny, “Some recent advances in density matrix theory,” Rev. Mod. Phys., 32 (1960) 335-69.
McWeeny62R. McWeeny, “Perturbation Theory for Fock-Dirac Density Matrix,” Phys. Rev., 126 (1962) 1028.
McWeeny68R. McWeeny and G. Dierksen, “Self-consistent perturbation theory. 2. Extension to open shells,” J. Chem. Phys., 49 (1968) 4852.
Mennucci02B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin, S. Gabriel, and P. J. Stephens, “Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules,” J. Phys. Chem. A, 106 (2002) 6102-13.
Mennucci97B. Mennucci and J. Tomasi, “Continuum solvation models: A new approach to the problem of solute's charge distribution and cavity boundaries,” J. Chem. Phys., 106 (1997) 5151-58.
Mennucci97aB. Mennucci, E. Cancès, and J. Tomasi, “Evaluation of Solvent Effects in Isotropic and Anisotropic Dielectrics, and in Ionic Solutions with a Unified Integral Equation Method: Theoretical Bases, Computational Implementation and Numerical Applications,” J. Phys. Chem. B, 101 (1997) 10506-17.
Miehlich89B. Miehlich, A. Savin, H. Stoll, and H. Preuss, “Results obtained with the correlation-energy density functionals of Becke and Lee, Yang and Parr,” Chem. Phys. Lett., 157 (1989) 200-06.
Miertus81S. Miertuš, E. Scrocco, and J. Tomasi, “Electrostatic Interaction of a Solute with a Continuum. A Direct Utilization of ab initio Molecular Potentials for the Prevision of Solvent Effects,” Chem. Phys., 55 (1981) 117-29.
Miertus82S. Miertuš and J. Tomasi, “Approximate Evaluations of the Electrostatic Free Energy and Internal Energy Changes in Solution Processes,” Chem. Phys., 65 (1982) 239-45.
Millam97J. M. Millam and G. E. Scuseria, “Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations,” J. Chem. Phys., 106 (1997) 5569-77.
Millam99J. M. Millam, V. Bakken, W. Chen, W. L. Hase, and H. B. Schlegel, “Ab initio classical trajectories on the Born-Oppenheimer Surface: Hessian-Based Integrators using Fifth Order Polynomial and Rational Function Fits,” J. Chem. Phys., 111 (1999) 3800-05.
Miller80W. H. Miller, N. C. Handy, and J. E. Adams, “Reaction-path Hamiltonian for polyatomic-molecules,” J. Chem. Phys., 72 (1980) 99-112.
Miller81W. H. Miller, in Potential Energy Surfaces and Dynamical Calculations, Ed. D. G. Truhlar (Plenum, New York, 1981) 265.
Miller88W. H. Miller, B. A. Ruf, and Y. T. Chang, “A diabatic reaction path Hamiltonian,” J. Chem. Phys., 89 (1988) 6298-304.
Miller90W. H. Miller, R. Hernandez, N. C. Handy, D. Jayatilaka, and A. Willets, “Ab initio calculation of anharmonic constants for a transition-state, with application to semiclassical transition-state tunneling probabilities,” Chem. Phys. Lett., 172 (1990) 62-68.
Mills93Quantities, Units and Symbols in Physical Chemistry, 2nd ed., Ed. I. Mills, T. Cvitaš, K. Homann, N. Kállay, and K. Kuchitsu (Blackwell, Oxford; dist. CRC Press, Boca Raton, 1993).
Minichino94C. Minichino and V. Barone, “From concepts to algorithms for the characterization of reaction mechanisms. H2CS as a case study,” J. Chem. Phys., 100 (1994) 3717-41.
Mo03S. J. Mo, T. Vreven, B. Mennucci, K. Morokuma, and J. Tomasi, “Theoretical study of the SN2 reaction of Cl-(H2O) + CH3Cl using our own N-layered integrated molecular orbital and molecular mechanics polarizable continuum model method (ONIOM-PCM),” Theor. Chem. Acc., 111 (2003) 154-61.
Mohallem86J. R. Mohallem, R. M. Dreizler, and M. Trsic, “A Griffin-Hill-Wheeler version of the Hartree-Fock equations,” Int. J. Quantum Chem., Quant. Chem. Symp., 30 (S20) (1986) 45-55.
Mohallem87J. R. Mohallem and M. Trsic, “A universal Gaussian basis set for atoms Li through Ne based on a generator coordinate version of the Hartree-Fock equations,” J. Chem. Phys., 86 (1987) 5043-44.
Mohr00P. J. Mohr and B. N. Taylor, “CODATA Recommended Values of the Fundamental Physical Constants: 1998,” Rev. Mod. Phys., 72 (2000) 351-495.
Mohr08P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA Recommended Values of the Fundamental Physical Constants: 2006,” Rev. Mod. Phys., 80 (2008) 633-730.
Moller34C. Møller and M. S. Plesset, “Note on an approximation treatment for many-electron systems,” Phys. Rev., 46 (1934) 0618-22.
Montgomery00J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, “A complete basis set model chemistry. VII. Use of the minimum population localization method,” J. Chem. Phys., 112 (2000) 6532-42.
Montgomery94J. A. Montgomery Jr., J. W. Ochterski, and G. A. Petersson, “A complete basis set model chemistry. IV. An improved atomic pair natural orbital method,” J. Chem. Phys., 101 (1994) 5900-09.
Montgomery99J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, “A complete basis set model chemistry. VI. Use of density functional geometries and frequencies,” J. Chem. Phys., 110 (1999) 2822-27.
Morokuma01K. Morokuma, D. G. Musaev, T. Vreven, H. Basch, M. Torrent, and D. V. Khoroshun, “Model Studies of the Structures, Reactivities, and Reaction Mechanisms of Metalloenzymes,” IBM J. Res. & Dev., 45 (2001) 367-95.
Mulliken55R. S. Mulliken, “Electronic Population Analysis on LCAO-MO Molecular Wave Functions,” J. Chem. Phys., 23 (1955) 1833-40.
Murtaugh70B. A. Murtaugh and R. W. H. Sargent, “Computational Experience with Quadratically Convergent Minimization Methods,” Comput. J., 13 (1970) 185-94.
Nakajima97T. Nakajima and H. Nakatsuji, “Analytical energy gradient of the ground, excited, ionized and electron-attached states calculated by the SAC/SAC-CI method,” Chem. Phys. Lett., 280 (1997) 79-84.
Nakajima99T. Nakajima and H. Nakatsuji, “Energy gradient method for the ground, excited, ionized, and electron-attached states calculated by the SAC (symmetry-adapted cluster)/SAC-CI (configuration interaction) method,” Chem. Phys., 242 (1999) 177-93.
Nakatsuji78H. Nakatsuji and K. Hirao, “Cluster expansion of the wavefunction: Symmetry-adapted-cluster expansion, its variational determination, and extension of open-shell orbital theory,” J. Chem. Phys., 68 (1978) 2053-65.
Nakatsuji79H. Nakatsuji, “Cluster expansion of the wavefunction: Calculation of electron correlations in ground and excited states by SAC and SAC CI theories,” Chem. Phys. Lett., 67 (1979) 334-42.
Nakatsuji79aH. Nakatsuji, “Cluster expansion of the wavefunction: Electron correlations in ground and excited states by SAC (Symmetry-Adapted-Cluster) and SAC CI theories,” Chem. Phys. Lett., 67 (1979) 329-33.
Nakatsuji91H. Nakatsuji, “Description of 2-electron and many-electron processes by the SAC-CI method,” Chem. Phys. Lett., 177 (1991) 331-37.
Nakatsuji91aH. Nakatsuji, “Exponentially generated configuration interaction theory. Descriptions of excited, ionized and electron attached states,” J. Chem. Phys., 94 (1991) 6716-27.
Nakatsuji93H. Nakatsuji and M. Ehara, “Symmetry-adapted cluster-configuration interaction method applied to high-spin multiplicity,” J. Chem. Phys., 98 (1993) 7179-84.
Nakatsuji96H. Nakatsuji, “Dipped adcluster model for chemisorption and catalytic reactions,” Prog. Surf. Sci., 54 (1996) 1.
Nakatsuji97H. Nakatsuji, in Computational Chemistry: Reviews of Current Trends, Ed. J. Leszczynski, Vol. 2 (World Scientific, Singapore, 1997) 62-124.
Neese01F. Neese, “Prediction of electron paramagnetic resonance g values using coupled perturbed Hartree-Fock and Kohn-Sham theory,” J. Chem. Phys., 115 (2001) 11080-96.
Nicklass95A. Nicklass, M. Dolg, H. Stoll, and H. Preuss, “Ab initio energy-adjusted pseudopotentials for the noble gases Ne through Xe: Calculation of atomic dipole and quadrupole polarizabilities,” J. Chem. Phys., 102 (1995) 8942-52.
Nyden81M. R. Nyden and G. A. Petersson, “Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions,” J. Chem. Phys., 75 (1981) 1843-62.
Ochterski96J. W. Ochterski, G. A. Petersson, and J. A. Montgomery Jr., “A complete basis set model chemistry. V. Extensions to six or more heavy atoms,” J. Chem. Phys., 104 (1996) 2598-619.
Ohrn81Y. Öhrn and G. Born, in Advances in Quantum Chemistry, Ed. P.-O. Löwdin, Vol. 13 (Academic Press, San Diego, CA, 1981) 1-88.
Olsen85J. Olsen and P. Jørgensen, “Linear and Nonlinear Response Functions for an Exact State and for an MCSCF State,” J. Chem. Phys., 82 (1985) 3235-64.
Olsen88J. Olsen, B. O. Roos, P. Jørgensen, and H. J. A. Jensen, “Determinant Based Configuration-Interaction Algorithms for Complete and Restricted Configuration-Interaction Spaces,” J. Chem. Phys., 89 (1988) 2185-92.
Olsen95J. Olsen, K. L. Bak, K. Ruud, T. Helgaker, and P. Jørgensen, “Orbital Connections for Perturbation-Dependent Basis-Sets,” Theor. Chem. Acc., 90 (1995) 421-39.
Onsager36L. Onsager, “Electric Moments of Molecules in Liquids,” J. Am. Chem. Soc., 58 (1936) 1486-93.
Orlandi73G. Orlandi and W. Siebrand, “Theory of vibronic intensity borrowing - Comparison of Herzberg-Teller and Born-Oppenheimer coupling,” J. Chem. Phys., 58 (1973) 4513-23.
Ortiz88J. V. Ortiz, “Electron binding energies of anionic alkali metal atoms from partial fourth order electron propagator theory calculations,” J. Chem. Phys., 89 (1988) 6348-52.
Ortiz88aJ. V. Ortiz, “Partial fourth order electron propagator theory,” Int. J. Quantum Chem., Quant. Chem. Symp., 34 (S22) (1988) 431-36.
Ortiz89J. V. Ortiz, “Electron propagator calculations with nondiagonal partial 4th-order self-energies and unrestricted Hartree-Fock reference states,” Int. J. Quantum Chem., Quant. Chem. Symp., S23 (1989) 321-32.
Ortiz96J. V. Ortiz, “Partial third-order quasiparticle theory: Comparisons for closed-shell ionization energies and an application to the Borazine photoelectron spectrum,” J. Chem. Phys., 104 (1996) 7599-605.
Ortiz97J. V. Ortiz, V. G. Zakrzewski, and O. Dolgounircheva, in Conceptual Perspectives in Quantum Chemistry, Ed. J.-L. Calais and E. Kryachko (Kluwer Academic, Dordrecht, 1997) 465-518.
Osamura81Y. Osamura, Y. Yamaguchi, and H. F. Schaefer III, “Analytic configuration-interaction (CI) gradient techniques for potential-energy hypersurfaces - a method for openshell molecular wave-functions,” J. Chem. Phys., 75 (1981) 2919-22.
Osamura82Y. Osamura, Y. Yamaguchi, and H. F. Schaefer III, “Generalization of analytic configuration-interaction (CI) gradient techniques for potential-energy hypersurfaces, including a solution to the coupled perturbed Hartree-Fock equations for multiconfiguration SCF molecular wave-functions,” J. Chem. Phys., 77 (1982) 383-90.
Otte07N. Otte, M. Scholten, and W. Thiel, “Looking at self-consistent-charge density functional tight binding from a semiempirical perspective,” J. Phys. Chem. A, 111 (2007) 5751-55.
Page88M. Page and J. W. McIver Jr., “On evaluating the reaction path Hamiltonian,” J. Chem. Phys., 88 (1988) 922-35.
Page90M. Page, C. Doubleday Jr., and J. W. McIver Jr., “Following steepest descent reaction paths - the use of higher energy derivatives with ab initio electronic-structure methods,” J. Chem. Phys., 93 (1990) 5634-42.
Palmer94I. J. Palmer, F. Bernardi, M. Olivucci, I. N. Ragazos, and M. A. Robb, “An MC-SCF study of the (photochemical) Paterno-Buchi reaction,” J. Am. Chem. Soc., 116 (1994) 2121-32.
Papajak11 E. Papajak, J. Zheng, H. R. Leverentz and D. G. Truhlar, “Perspectives on Basis Sets Beautiful: Seasonal Plantings of Diffuse Basis Functions,” J. Chem. Theory and Comput., 7 (2011) 3027.
Papousek82D. Papousek and M. R. Aliev, in Molecular Vibrational Spectra, Ed. J. R. Durig (Elsevier, New York, 1982).
Parr89R. G. Parr and W. Yang, Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford, 1989).
Parthiban01S. Parthiban and J. M. L. Martin, “Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities,” J. Chem. Phys., 114 (2001) 6014-29.
Pascual-Ahuir94J. L. Pascual-Ahuir, E. Silla, and I. Tuñón, “GEPOL: An improved description of molecular-surfaces. 3. A new algorithm for the computation of a solvent-excluding surface,” J. Comp. Chem., 15 (1994) 1127-38.
Pedersen95T. B. Pedersen and A. E. Hansen, “Ab initio calculation and display of the rotatory strength tensor in the random phase approximation. Method and model studies,” Chem. Phys. Lett., 246 (1995) 1-8.
Peluso97A. Peluso, F. Santoro, and G. del Re, “Vibronic coupling in electronic transitions with significant Duschinsky effect,” Int. J. Quantum Chem., 63 (1997) 233-44.
Peng93C. Peng and H. B. Schlegel, “Combining Synchronous Transit and Quasi-Newton Methods for Finding Transition States,” Israel J. Chem., 33 (1993) 449-54.
Peng96C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, “Using redundant internal coordinates to optimize equilibrium geometries and transition states,” J. Comp. Chem., 17 (1996) 49-56.
Peralta03J. E. Peralta, G. E. Scuseria, J. R. Cheeseman, and M. J. Frisch, “Basis set dependence of NMR Spin-Spin Couplings in Density Functional Theory Calculations: First row and hydrogen atoms,” Chem. Phys. Lett., 375 (2003) 452-58.
Perdew09 John P. Perdew, Adrienn Ruzsinszky, Gábor I. Csonka, Lucian A. Constantin, and Jianwei Sun, “Workhorse Semilocal Density Functional for Condensed Matter Physics and Quantum Chemistry,” Phys. Rev. Lett. 103 (2009) 026403.
Perdew11 John P. Perdew, Adrienn Ruzsinszky, Gábor I. Csonka, Lucian A. Constantin, and Jianwei Sun, “Erratum: ‘Workhorse Semilocal Density Functional for Condensed Matter Physics and Quantum Chemistry’ [Phys. Rev. Lett. 103, 026403 (2009)]” Phys. Rev. Lett. 106 (2011) 179902(E).
Perdew81J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B, 23 (1981) 5048-79.
Perdew86J. P. Perdew, “Density-functional approximation for the correlation energy of the inhomogeneous electron gas,” Phys. Rev. B, 33 (1986) 8822-24.
Perdew91J. P. Perdew, in Electronic Structure of Solids ‘91, Ed. P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991) 11.
Perdew92J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Phys. Rev. B, 46 (1992) 6671-87.
Perdew92aJ. P. Perdew and Y. Wang, “Accurate and Simple Analytic Representation of the Electron Gas Correlation Energy,” Phys. Rev. B, 45 (1992) 13244-49.
Perdew93aJ. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Erratum: Atoms, molecules, solids, and surfaces - Applications of the generalized gradient approximation for exchange and correlation,” Phys. Rev. B, 48 (1993) 4978.
Perdew96J. P. Perdew, K. Burke, and Y. Wang, “Generalized gradient approximation for the exchange-correlation hole of a many-electron system,” Phys. Rev. B, 54 (1996) 16533-39.
Perdew96aJ. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., 77 (1996) 3865-68.
Perdew97J. P. Perdew, K. Burke, and M. Ernzerhof, “Errata: Generalized gradient approximation made simple,” Phys. Rev. Lett., 78 (1997) 1396.
Perdew99J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, “Accurate density functional with correct formal properties: A step beyond the generalized gradient approximation,” Phys. Rev. Lett., 82 (1999) 2544-47.
Peterson94K. A. Peterson, D. E. Woon, and T. H. Dunning Jr., “Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2 → H2+H reaction,” J. Chem. Phys., 100 (1994) 7410-15.
Petersson88G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, and J. Mantzaris, “A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms,” J. Chem. Phys., 89 (1988) 2193-218.
Petersson91G. A. Petersson and M. A. Al-Laham, “A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms,” J. Chem. Phys., 94 (1991) 6081-90.
Petersson91aG. A. Petersson, T. G. Tensfeldt, and J. A. Montgomery Jr., “A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods,” J. Chem. Phys., 94 (1991) 6091-101.
Petersson98G. A. Petersson, in Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics, Ed. K. K. Irikura and D. J. Frurip, ACS Symposium Series, Vol. 677 (ACS, Washington, D.C., 1998) 237.
Petersson98aG. A. Petersson, D. K. Malick, W. G. Wilson, J. W. Ochterski, J. A. Montgomery Jr., and M. J. Frisch, “Calibration and comparison of the Gaussian-2, complete basis set, and density functional methods for computational thermochemistry,” J. Chem. Phys., 109 (1998) 10570-79.
Peverati11 R. Peverati, Y. Zhao and D. G. Truhlar, “Generalized Gradient Approximation That Recovers the Second-Order Density-Gradient Expansion with Optimized Across-the-Board Performance,” J. Phys. Chem. Lett. 2 (2011) 1991-1997.
Peverati11a R. Peverati and D. G. Truhlar, “Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation,” J. Phys. Chem. Lett. 2 (2011) 2810-2817.
Peverati11b R. Peverati and D. G. Truhlar, “A global hybrid generalized gradient approximation to the exchange-correlation functional that satisfies the second-order density-gradient constraint and has broad applicability in chemistry,” J. Chem. Phys. 135 (2011) 191102.
Peverati12 R. Peverati and D. G. Truhlar, “M11-L: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics,” J. Phys. Chem. Lett. 3 (2012) 117-124.
Peverati12a R. Peverati and D. G. Truhlar, “Screened-exchange density functionals with broad accuracy for chemistry and solidstate physics,” Phys. Chem. Chem. Phys. 14 (2012) 16187.
Peverati12b R. Peverati and D. G. Truhlar, “Exchange-Correlation Functional with Good Accuracy for Both Structural and Energetic Properties while Depending Only on the Density and Its Gradient,” J. Chem. Theory and Comput. 8 (2012) 2310-2319.
Peverati12c R. Peverati and D. G. Truhlar, “An improved and broadly accurate local approximation to the exchange–correlation density functional: The MN12-L functional for electronic structure calculations in chemistry and physics,” Phys. Chem. Chem. Phys. 10 (2012) 13171.
Pickett91 H. M. Pickett, “The Fitting and Prediction of Vibration-Rotation Spectra with Spin Interactions,” J. Mol. Spec., 148 (1991) 371-77. See spec.jpl.nasa.gov
Pierotti76R. A. Pierotti, “A scaled particle theory of aqueous and nonaqueous solutions,” Chem. Rev., 76 (1976) 717.
Pietro82W. J. Pietro, M. M. Francl, W. J. Hehre, D. J. Defrees, J. A. Pople, and J. S. Binkley, “Self-Consistent Molecular Orbital Methods. 24. Supplemented small split-valence basis-sets for 2nd-row elements,” J. Am. Chem. Soc., 104 (1982) 5039-48.
Pipek89J. Pipek and P. G. Mezey, “A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions,” J. Chem. Phys., 90 (1989) 4916-26.
Pople54J. A. Pople and R. K. Nesbet, “Self-Consistent Orbitals for Radicals,” J. Chem. Phys., 22 (1954) 571-72.
Pople67J. A. Pople, D. Beveridge, and P. Dobosh, “Approximate self-consistent molecular-orbital theory. 5. Intermediate neglect of differential overlap,” J. Chem. Phys., 47 (1967) 2026-33.
Pople67aJ. A. Pople and M. S. Gordon, “Molecular orbital theory of electronic structure of organic compounds. 1. Substituent effects and dipole methods,” J. Am. Chem. Soc., 89 (1967) 4253.
Pople76J. A. Pople, J. S. Binkley, and R. Seeger, “Theoretical Models Incorporating Electron Correlation,” Int. J. Quantum Chem., Suppl. Y-10 (1976) 1-19.
Pople77J. A. Pople, R. Seeger, and R. Krishnan, “Variational Configuration Interaction Methods and Comparison with Perturbation Theory,” Int. J. Quantum Chem., Suppl. Y-11 (1977) 149-63.
Pople78J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, “Electron Correlation Theories and Their Application to the Study of Simple Reaction Potential Surfaces,” Int. J. Quantum Chem., 14 (1978) 545-60.
Pople79J. A. Pople, K. Raghavachari, H. B. Schlegel, and J. S. Binkley, “Derivative Studies in Hartree-Fock and Møller-Plesset Theories,” Int. J. Quantum Chem., Quant. Chem. Symp., S13 (1979) 225-41.
Pople87J. A. Pople, M. Head-Gordon, and K. Raghavachari, “Quadratic configuration interaction - a general technique for determining electron correlation energies,” J. Chem. Phys., 87 (1987) 5968-75.
Pople89J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, and L. A. Curtiss, “Gaussian-1 theory: A general procedure for prediction of molecular energies,” J. Chem. Phys., 90 (1989) 5622-29.
Pople92J. A. Pople, P. M. W. Gill, and B. G. Johnson, “Kohn-Sham density-functional theory within a finite basis set,” Chem. Phys. Lett., 199 (1992) 557-60.
Porezag95D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, and R. Kaschner, “Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon,” Phys. Rev. B, 51 (1995) 12947-57.
Pulay72P. Pulay and W. Meyer, “Force constants and dipole-moment derivatives of ammonia from Hartree-Fock calculations,” J. Chem. Phys., 57 (1972) 3337.
Pulay79P. Pulay, G. Fogarasi, F. Pang, and J. E. Boggs, “Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole-moment derivatives,” J. Am. Chem. Soc., 101 (1979) 2550-60.
Pulay82P. Pulay, “Improved SCF convergence acceleration,” J. Comp. Chem., 3 (1982) 556-60.
Pulay83P. Pulay, “2nd and 3rd derivatives of variational energy expressions - application to multi-configurational self-consistent field wave-functions,” J. Chem. Phys., 78 (1983) 5043-51.
Pulay92P. Pulay and G. Fogarasi, “Geometry optimization in redundant internal coordinates,” J. Chem. Phys., 96 (1992) 2856-60.
Purvis82G. D. Purvis III and R. J. Bartlett, “A full coupled-cluster singles and doubles model - the inclusion of disconnected triples,” J. Chem. Phys., 76 (1982) 1910-18.
Pyykko81P. Pyykko and L. L. Lohr, “Relativistically Parameterized Extended Huckel Calculations. 3. Structure and Bonding for Some Compounds of Uranium and Other Heavy-Elements,” Inorganic Chem., 20 (1981) 1950-59.
Pyykko84P. Pyykko and L. Laaksonen, “Relativistically Parameterized Extended Huckel Calculations. 8. Double-Zeta Parameters for the Actinoids Th, Pa, U, Np, Pu, and Am and an Application on Uranyl,” J. Phys. Chem., 88 (1984) 4892-95.
Rabuck99A. Rabuck and G. E. Scuseria, “Improving self-consistent field convergence by varying occupation numbers,” J. Chem. Phys., 110 (1999) 695-700.
Raff85L. M. Raff and D. L. Thompson, in Theory of Chemical Reaction Dynamics, Ed. M. Baer (CRC, Boca Raton, FL, 1985).
Raffenetti73R. C. Raffenetti, “Pre-processing Two-Electron Integrals for Efficient Utilization in Many-Electron Self-Consistent Field Calculations,” Chem. Phys. Lett., 20 (1973) 335-38.
Ragazos92I. N. Ragazos, M. A. Robb, F. Bernardi, and M. Olivucci, “Optimization and Characterization of the Lowest Energy Point on a Conical Intersection using an MC-SCF Lagrangian,” Chem. Phys. Lett., 197 (1992) 217-23.
Raghavachari78K. Raghavachari and J. A. Pople, “Approximate 4th-order perturbation-theory of electron correlation energy,” Int. J. Quantum Chem., 14 (1978) 91-100.
Raghavachari80 K. Raghavachari, M. J. Frisch, and J. A. Pople, “Contribution of triple substitutions to the electron correlation energy in fourth-order perturbation theory,” J. Chem. Phys., 72 (1980) 4244-45.
Raghavachari80aK. Raghavachari, H. B. Schlegel, and J. A. Pople, “Derivative studies in configuration-interaction theory,” J. Chem. Phys., 72 (1980) 4654-55.
Raghavachari80bK. Raghavachari, J. S. Binkley, R. Seeger, and J. A. Pople, “Self-Consistent Molecular Orbital Methods. 20. Basis set for correlated wave-functions,” J. Chem. Phys., 72 (1980) 650-54.
Raghavachari81K. Raghavachari and J. A. Pople, “Calculation of one-electron properties using limited configuration-interaction techniques,” Int. J. Quantum Chem., 20 (1981) 1067-71.
Raghavachari89K. Raghavachari and G. W. Trucks, “Highly correlated systems: Excitation energies of first row transition metals Sc-Cu,” J. Chem. Phys., 91 (1989) 1062-65.
Raghavachari90K. Raghavachari, J. A. Pople, E. S. Replogle, and M. Head-Gordon, “Fifth Order Møller-Plesset Perturbation Theory: Comparison of Existing Correlation Methods and Implementation of New Methods Correct to Fifth Order,” J. Phys. Chem., 94 (1990) 5579-86.
Rappe07 A. K. Rappé, L. M. Bormann-Rochotte, D. C. Wiser, J. R. Hart, M. A. Pietsch, C. J. Casewit and W. M. Skiff, “APT: A next generation QM-based reactive force field model,” Mol. Phys. 105 (2007) 301.
Rappe81A. K. Rappé, T. Smedly, and W. A. Goddard III, “The Shape and Hamiltonian Consistent (SHC) Effective Potentials,” J. Phys. Chem., 85 (1981) 1662-66.
Rappe91A. K. Rappé and W. A. Goddard III, “Charge equilibration for molecular-dynamics simulations,” J. Phys. Chem., 95 (1991) 3358-63.
Rappe92A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. G. III, and W. M. Skiff, “UFF, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations,” J. Am. Chem. Soc., 114 (1992) 10024-35.
Rassolov01V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, and L. A. Curtiss, “6-31G* Basis Set for Third-Row Atoms,” J. Comp. Chem., 22 (2001) 976-84.
Rassolov98V. A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus, “6-31G* basis set for atoms K through Zn,” J. Chem. Phys., 109 (1998) 1223-29.
Reed83aA. E. Reed and F. Weinhold, “Natural bond orbital analysis of near-Hartree-Fock water dimer,” J. Chem. Phys., 78 (1983) 4066-73.
Reed85A. E. Reed, R. B. Weinstock, and F. Weinhold, “Natural-population analysis,” J. Chem. Phys., 83 (1985) 735-46.
Reed85aA. E. Reed and F. Weinhold, “Natural Localized Molecular Orbitals,” J. Chem. Phys., 83 (1985) 1736-40.
Reed88A. E. Reed, L. A. Curtiss, and F. Weinhold, “Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint,” Chem. Rev., 88 (1988) 899-926.
Rega96N. Rega, M. Cossi, and V. Barone, “Development and validation of reliable quantum mechanical approaches for the study of free radicals in solution,” J. Chem. Phys., 105 (1996) 11060-67.
Repasky02M. P. Repasky, J. Chandrasekhar, and W. L. Jorgensen, “PDDG/PM3 and PDDG/MNDO: Improved semiempirical methods,” J. Comp. Chem., 23 (2002) 1601-22.
Rey98J. Rey and A. Savin, “Virtual space level shifting and correlation energies,” Int. J. Quantum Chem., 69 (1998) 581-90.
Ricca95A. Ricca and C. W. Bauschlicher Jr., “Successive H2O binding energies for Fe(H2O)N+,” J. Phys. Chem., 99 (1995) 9003-07.
Rice90J. E. Rice, R. D. Amos, S. M. Colwell, N. C. Handy, and J. Sanz, “Frequency-Dependent Hyperpolarizabilities with Application to Formaldehyde and Methyl-Fluoride,” J. Chem. Phys., 93 (1990) 8828-39.
Rice91J. E. Rice and N. C. Handy, “The Calculation of Frequency-Dependent Polarizabilities as Pseudo-Energy Derivatives,” J. Chem. Phys., 94 (1991) 4959-71.
Rice92J. E. Rice and N. C. Handy, “The Calculation of Frequency-Dependent Hyperpolarizabilities Including Electron Correlation-Effects,” Int. J. Quantum Chem., 43 (1992) 91-118.
Ridley73J. E. Ridley and M. C. Zerner, “An Intermediate Neglect of Differential Overlap Technique for Spectroscopy: Pyrrole and the Azines,” Theor. Chem. Acc., 32 (1973) 111-34.
Ridley76J. E. Ridley and M. C. Zerner, “Triplet states via Intermediate Neglect of Differential Overlap: Benzene, Pyridine, and Diazines,” Theor. Chem. Acc., 42 (1976) 223-36.
Ritchie85J. P. Ritchie, “Electron density distribution analysis for nitromethane, nitromethide, and nitramide,” J. Am. Chem. Soc., 107 (1985) 1829-37.
Ritchie87J. P. Ritchie and S. M. Bachrach, “Some methods and applications of electron density distribution analysis,” J. Comp. Chem., 8 (1987) 499-509.
Robb90M. A. Robb and U. Niazi, Reports in Molecular Theory, 1 (1990) 23.
Roothaan51C. C. J. Roothaan, “New Developments in Molecular Orbital Theory,” Rev. Mod. Phys., 23 (1951) 69.
Rosenfeld28L. Z. Rosenfeld, Physik, 52 (1928) 161.
Ruud02K. Ruud and T. Helgaker, “Optical rotation studied by density-functional and coupled-cluster methods,” Chem. Phys. Lett., 352 (2002) 533-39.
Ruud02aK. Ruud, T. Helgaker, and P. Bour, “Gauge-origin independent density-functional theory calculations of vibrational Raman optical activity,” J. Phys. Chem. A, 106 (2002) 7448-55.
Ruud93K. Ruud, T. Helgaker, K. L. Bak, P. Jørgensen, and H. J. A. Jensen, “Hartree-Fock Limit Magnetizabilities from London Orbitals,” J. Chem. Phys., 99 (1993) 3847-59.
Rys83J. Rys, M. Dupuis, and H. F. King, “Computation of electron repulsion integrals using the Rys quadrature method,” J. Comp. Chem., 4 (1983) 154-57.
Saebo89S. Saebø and J. Almlöf, “Avoiding the integral storage bottleneck in LCAO calculations of electron correlation,” Chem. Phys. Lett., 154 (1989) 83-89.
Salahub89The Challenge of d and f Electrons, Ed. D. R. Salahub and M. C. Zerner (ACS, Washington, D.C., 1989).
Salter89E. A. Salter, G. W. Trucks, and R. J. Bartlett, “Analytic Energy Derivatives in Many-Body Methods. I. First Derivatives,” J. Chem. Phys., 90 (1989) 1752-66.
Santoro07F. Santoro, R. Improta, A. Lami, J. Bloino, and V. Barone, “Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution,” J. Chem. Phys., 126 (2007) 084509 1-13.
Santoro07aF. Santoro, A. Lami, R. Improta, and V. Barone, “Effective method to compute vibrationally resolved optical spectra of large molecules at finite temperature in the gas phase and in solution,” J. Chem. Phys., 126 (2007) 184102.
Santoro08F. Santoro, A. Lami, R. Improta, J. Bloino, and V. Barone, “Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg-Teller effect: The Qx band of porphyrin as a case study,” J. Chem. Phys., 128 (2008) 224311.
Sattelmeyer06K. W. Sattelmeyer, J. Tirado-Rives, and W. L. Jorgensen, “Comparison of SCC-DFTB and NDDO-based semiempirical molecular orbital methods for organic molecules,” J. Phys. Chem. A, 110 (2006) 13551-59.
Scalmani06G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, and V. Barone, “Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model,” J. Chem. Phys., 124 (2006) 094107: 1-15.
Scalmani10 G. Scalmani and M. J. Frisch, “Continuous surface charge polarizable continuum models of solvation. I. General formalism,” J. Chem. Phys., 132 (2010) 114110
Schaefer92A. Schaefer, H. Horn, and R. Ahlrichs, “Fully optimized contracted Gaussian-basis sets for atoms Li to Kr,” J. Chem. Phys., 97 (1992) 2571-77.
Schaefer94A. Schaefer, C. Huber, and R. Ahlrichs, “Fully optimized contracted Gaussian-basis sets of triple zeta valence quality for atoms Li to Kr,” J. Chem. Phys., 100 (1994) 5829-35.
Schlegel01H. B. Schlegel, J. M. Millam, S. S. Iyengar, G. A. Voth, G. E. Scuseria, A. D. Daniels, and M. J. Frisch, “Ab initio molecular dynamics: Propagating the density matrix with Gaussian orbitals,” J. Chem. Phys., 114 (2001) 9758-63.
Schlegel02H. B. Schlegel, S. S. Iyengar, X. Li, J. M. Millam, G. A. Voth, G. E. Scuseria, and M. J. Frisch, “Ab initio molecular dynamics: Propagating the density matrix with Gaussian orbitals. III. Comparison with Born-Oppenheimer dynamics,” J. Chem. Phys., 117 (2002) 8694-704.
Schlegel82H. B. Schlegel, “Optimization of Equilibrium Geometries and Transition Structures,” J. Comp. Chem., 3 (1982) 214-18.
Schlegel82aH. B. Schlegel and M. A. Robb, “MC SCF gradient optimization of the H2CO → H2 + CO transition structure,” Chem. Phys. Lett., 93 (1982) 43-46.
Schlegel84H. B. Schlegel, J. S. Binkley, and J. A. Pople, “First and Second Derivatives of Two Electron Integrals over Cartesian Gaussians using Rys Polynomials,” J. Chem. Phys., 80 (1984) 1976-81.
Schlegel84aH. B. Schlegel, “Estimating the Hessian for gradient-type geometry optimizations,” Theor. Chem. Acc., 66 (1984) 333-40.
Schlegel89H. B. Schlegel, in New Theoretical Concepts for Understanding Organic Reactions, Ed. J. Bertran and I. G. Csizmadia, NATO-ASI series C, vol. 267 (Kluwer Academic, The Netherlands, 1989) 33-53.
Schlegel91H. B. Schlegel and M. J. Frisch, in Theoretical and Computational Models for Organic Chemistry, Ed. J. S. Formosinho, I. G. Csizmadia, and L. G. Arnaut, NATO-ASI Series C, vol. 339 (Kluwer Academic, The Netherlands, 1991) 5-33.
Schlegel91aH. B. Schlegel and J. J. McDouall, in Computational Advances in Organic Chemistry, Ed. C. Ögretir and I. G. Csizmadia (Kluwer Academic, The Netherlands, 1991) 167-85.
Schlegel95H. B. Schlegel, in Modern Electronic Structure Theory, Ed. D. R. Yarkony (World Scientific Publishing, Singapore, 1995) 459-500.
Schlegel95aH. B. Schlegel and M. J. Frisch, “Transformation between Cartesian and Pure Spherical Harmonic Gaussians,” Int. J. Quantum Chem., 54 (1995) 83-87.
Schmider98H. L. Schmider and A. D. Becke, “Optimized density functionals from the extended G2 test set,” J. Chem. Phys., 108 (1998) 9624-31.
Schwabe06T. Schwabe and S. Grimme, “Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects,” Phys. Chem. Chem. Phys., 8 (2006) 4398.
Schwabe07T. Schwabe and S. Grimme, “Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability,” Phys. Chem. Chem. Phys., 9 (2007) 3397.
Schwartz98M. Schwartz, P. Marshall, R. J. Berry, C. J. Ehlers, and G. A. Petersson, “Computational study of the kinetics of hydrogen abstraction from fluoromethanes by the hydroxyl radical,” J. Phys. Chem. A, 102 (1998) 10074-81.
Schwerdtfeger89P. Schwerdtfeger, M. Dolg, W. H. E. Schwarz, G. A. Bowmaker, and P. D. W. Boyd, “Relativistic effects in gold chemistry. 1. Diatomic gold compounds,” J. Chem. Phys., 91 (1989) 1762-74.
Scuseria88G. E. Scuseria, C. L. Janssen, and H. F. Schaefer III, “An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations,” J. Chem. Phys., 89 (1988) 7382-87.
Scuseria89G. E. Scuseria and H. F. Schaefer III, “Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration-interaction (QCISD)?,” J. Chem. Phys., 90 (1989) 3700-03.
Scuseria92G. E. Scuseria, “Comparison of coupled-cluster results with a hybrid of Hartree-Fock and density functional theory,” J. Chem. Phys., 97 (1992) 7528-30.
Seeger76R. Seeger and J. A. Pople, “Self-Consistent Molecular Orbital Methods. 16. Numerically stable direct energy minimization procedures for solution of Hartree-Fock equations,” J. Chem. Phys., 65 (1976) 265-71.
Seeger77R. Seeger and J. A. Pople, “Self-Consistent Molecular Orbital Methods. 28. Constraints and Stability in Hartree-Fock Theory,” J. Chem. Phys., 66 (1977) 3045-50.
Segal66G. Segal and J. Pople, “Approximate self-consistent molecular orbital theory. 3. CNDO results for AB2 and AB3 systems,” J. Chem. Phys., 44 (1966) 3289-96.
Sekino86H. Sekino and R. J. Bartlett, “Frequency-Dependent Nonlinear Optical-Properties of Molecules,” J. Chem. Phys., 85 (1986) 976-89.
Sharp64T. E. Sharp and H. M. Rosenstock, “Franck-Condon factors for polyatomic molecules,” J. Chem. Phys., 41 (1964) 3453.
Siegbahn84P. E. M. Siegbahn, “A new direct CI method for large CI expansions in a small orbital space,” Chem. Phys. Lett., 109 (1984) 417-23.
Silver78D. M. Silver, S. Wilson, and W. C. Nieuwpoort, “Universal basis sets and transferability of integrals,” Int. J. Quantum Chem., 14 (1978) 635-39.
Silver78aD. M. Silver and W. C. Nieuwpoort, “Universal atomic basis sets,” Chem. Phys. Lett., 57 (1978) 421-22.
Simon96S. Simon, M. Duran, and J. J. Dannenberg, “How does basis set superposition error change the potential surfaces for hydrogen bonded dimers?,” J. Chem. Phys., 105 (1996) 11024-31.
Simons83J. Simons, P. Jørgensen, H. Taylor, and J. Ozment, “Walking on Potential Energy Surfaces,” J. Phys. Chem., 87 (1983) 2745-53.
Singh84U. C. Singh and P. A. Kollman, “An approach to computing electrostatic charges for molecules,” J. Comp. Chem., 5 (1984) 129-45.
Skodje82R. T. Skodje, D. G. Truhlar, and B. C. Garrett, “Vibrationally adiabatic models for reactive tunneling,” J. Chem. Phys., 77 (1982) 5955-76.
Slater74J. C. Slater, The Self-Consistent Field for Molecular and Solids, Quantum Theory of Molecular and Solids, Vol. 4 (McGraw-Hill, New York, 1974).
Small71G. J. Small, “Herzberg-Teller vibronic coupling and Duschinsky effect,” J. Chem. Phys., 54 (1971) 3300.
Smith86C. M. Smith and G. G. Hall, “Approximation of electron-densities,” Theor. Chem. Acc., 69 (1986) 63-69.
Sosa92C. Sosa, J. Andzelm, B. C. Elkin, E. Wimmer, K. D. Dobbs, and D. A. Dixon, “A Local Density Functional Study of the Structure and Vibrational Frequencies of Molecular Transition-Metal Compounds,” J. Phys. Chem., 96 (1992) 6630-36.
Sosa93aC. Sosa and C. Lee, “Density-functional description of transition structures using nonlocal corrections: Silylene insertion reactions into the hydrogen molecule,” J. Chem. Phys., 98 (1993) 8004-11.
Stanton93J. F. Stanton and R. J. Bartlett, “Equation of motion coupled-cluster method: A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties,” J. Chem. Phys., 98 (1993) 7029-39.
Stephens01P. J. Stephens, F. J. Devlin, J. R. Cheeseman, and M. J. Frisch, “Calculation of optical rotation using density functional theory,” J. Phys. Chem. A, 105 (2001) 5356-71.
Stephens02aP. J. Stephens, F. J. Devlin, J. R. Cheeseman, M. J. Frisch, and C. Rosini, “Determination of Absolute Configuration Using Optical Rotation Calculated Using Density Functional Theory,” Org. Lett., 4 (2002) 4595-98.
Stephens03P. J. Stephens, F. J. Devlin, J. R. Cheeseman, M. J. Frisch, O. Bortolini, and P. Besse, “Determination of Absolute Configuration Using Ab Initio Calculation of Optical Rotation,” Chirality, 15 (2003) S57-S64.
Stephens05P. J. Stephens, D. M. McCann, J. R. Cheeseman, and M. J. Frisch, “Determination of absolute configurations of chiral molecules using ab initio time-dependent density functional theory calculations of optical rotation: How reliable are absolute configurations obtained for molecules with small rotations?,” Chirality, 17 (2005) S52-S64.
Stephens08J. P. Stephens, J. J. Pan, F. J. Devlin, and J. R. Cheeseman, “Determination of the Absolute Configurations of Natural Products Using TDDFT Optical Rotation Calculations: The Iridoid Oruwacin,” J. Natural Prod., 71 (2008) 285-88.
Stephens94P. J. Stephens, F. J. Devlin, M. J. Frisch, and C. F. Chabalowski, “Ab initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields,” J. Phys. Chem., 98 (1994) 11623-27.
Stephens94aP. J. Stephens, F. J. Devlin, C. S. Ashvar, C. F. Chabalowski, and M. J. Frisch, “Theoretical Calculation of Vibrational Circular Dichroism Spectra,” Faraday Discuss., 99 (1994) 103-19.
Stevens63R. M. Stevens, R. M. Pitzer, and W. N. Lipscomb, “Perturbed Hartree-Fock calculations. 1. Magnetic susceptibility and shielding in LiH molecule,” J. Chem. Phys., 38 (1963) 550.
Stevens84W. J. Stevens, H. Basch, and M. Krauss, “Compact effective potentials and efficient shared-exponent basis-sets for the 1st-row and 2nd-row atoms,” J. Chem. Phys., 81 (1984) 6026-33.
Stevens92W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, “Relativistic compact effective potentials and efficient, shared-exponent basis-sets for the 3rd-row, 4th-row, and 5th-row atoms,” Can. J. Chem., 70 (1992) 612-30.
Stewart07J. J. P. Stewart, “Optimization of parameters for semiempirical methods. V. Modification of NDDO approximations and application to 70 elements,” J. Mol. Model., 13 (2007) 1173-213.
Stewart89J. J. P. Stewart, “Optimization of parameters for semiempirical methods. I. Method,” J. Comp. Chem., 10 (1989) 209-20.
Stewart89aJ. J. P. Stewart, “Optimization of parameters for semiempirical methods. II. Applications,” J. Comp. Chem., 10 (1989) 221-64.
Stoll84H. Stoll, P. Fuentealba, P. Schwerdtfeger, J. Flad, L. v. Szentpály, and H. Preuss, “Cu and Ag as one-valence-electron atoms - CI results and quadrupole corrections of Cu2, Ag2, CuH, and AgH,” J. Chem. Phys., 81 (1984) 2732-36.
Strain96M. C. Strain, G. E. Scuseria, and M. J. Frisch, “Achieving Linear Scaling for the Electronic Quantum Coulomb Problem,” Science, 271 (1996) 51-53.
Stratmann96R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, “Achieving linear scaling in exchange-correlation density functional quadratures,” Chem. Phys. Lett., 257 (1996) 213-23.
Stratmann97R. E. Stratmann, J. C. Burant, G. E. Scuseria, and M. J. Frisch, “Improving harmonic vibrational frequencies calculations in density functional theory,” J. Chem. Phys., 106 (1997) 10175-83.
Stratmann98R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, “An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules,” J. Chem. Phys., 109 (1998) 8218-24.
Svensson96M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, and K. Morokuma, “ONIOM: A multi-layered integrated MO+MM method for geometry optimizations and single point energy predictions. A test for Diels-Alder reactions and Pt(P(t-Bu)3)2+H2 oxidative addition,” J. Phys. Chem., 100 (1996) 19357-63.
Svensson96aM. Svensson, S. Humbel, and K. Morokuma, “Energetics using the single point IMOMO (integrated molecular orbital plus molecular orbital) calculations: Choices of computational levels and model system,” J. Chem. Phys., 105 (1996) 3654-61.
Sychrovsky00V. Sychrovsky, J. Gräfenstein, and D. Cremer, “Nuclear magnetic resonance spin-spin coupling constants from coupled perturbed density functional theory,” J. Chem. Phys., 113 (2000) 3530-47.
Szentpaly82L. v. Szentpály, P. Fuentealba, H. Preuss, and H. Stoll, “Pseudopotential calculations on Rb+2, Cs+2, RbH+, CsH+ and the mixed alkali dimer ions ” Chem. Phys. Lett., 93 (1982) 555-59.
Tao03J. M. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, “Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids,” Phys. Rev. Lett., 91 (2003) 146401.
Tawada04Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, “A long-range-corrected time-dependent density functional theory,” J. Chem. Phys., 120 (2004) 8425.
Taylor87P. R. Taylor, “Integral processing in beyond-Hartree-Fock calculations,” Int. J. Quantum Chem., 31 (1987) 521-34.
Thiel92W. Thiel and A. A. Voityuk, “Extension of the MNDO formalism to d orbitals: Integral approximations and preliminary numerical results,” Theor. Chem. Acc., 81 (1992) 391-404.
Thiel96W. Thiel and A. A. Voityuk, “Extension of MNDO to d orbitals: Parameters and results for the second-row elements and for the zinc group,” J. Phys. Chem., 100 (1996) 616-26.
Thompson91M. A. Thompson and M. C. Zerner, “A Theoretical Examination of the Electronic Structure and Spectroscopy of the Photosynthetic Reaction Center from Rhodopseudomonas viridis,” J. Am. Chem. Soc., 113 (1991) 8210-15.
Thompson98D. L. Thompson, in Encyclopedia of Computational Chemistry, Ed. P. v. R. Schleyer, N. L. Allinger, P. A. Kollman, T. Clark, H. F. Schaefer III, J. Gasteiger, and P. R. Schreiner (Wiley, Chichester, 1998) 3056-73.
Thorvaldsen08A. J. Thorvaldsen, K. Ruud, K. Kristensen, P. Jørgensen, and S. Coriani, “A density matrix-based quasienergy formulation of the Kohn-Sham density functional response theory using perturbation- and time-dependent basis sets,” J. Chem. Phys., 129 (2008) 214108.
Tirado-Rives08J. Tirado-Rives and W. L. Jorgensen, “Performance of B3LYP density functional methods for a large set of organic molecules,” J. Chem. Theory and Comput., 4 (2008) 297-306.
Tomasi02J. Tomasi, R. Cammi, B. Mennucci, C. Cappelli, and S. Corni, “Molecular properties in solution described with a continuum solvation model,” Phys. Chem. Chem. Phys., 4 (2002) 5697-712.
Tomasi05J. Tomasi, B. Mennucci, and R. Cammi, “Quantum mechanical continuum solvation models,” Chem. Rev., 105 (2005) 2999-3093.
Tomasi99J. Tomasi, B. Mennucci, and E. Cancès, “The IEF version of the PCM solvation method: An overview of a new method addressed to study molecular solutes at the QM ab initio level,” J. Mol. Struct. (Theochem), 464 (1999) 211-26.
Tonachini90G. Tonachini, H. B. Schlegel, F. Bernardi, and M. A. Robb, “MC-SCF Study of the Addition Reaction of the 1Dg Oxygen Molecule to Ethene,” J. Am. Chem. Soc., 112 (1990) 483-91.
Torrent02M. Torrent, T. Vreven, D. G. Musaev, K. Morokuma, Ö. Farkas, and H. B. Schlegel, “Effects of the protein environment on the structure and energetics of active sites of metalloenzymes: ONIOM study of methane monooxygenase and ribonucleotide reductase,” J. Am. Chem. Soc., 124 (2002) 192-93.
Toulouse02J. Toulouse, A. Savin, and C. Adamo, “Validation and assessment of an accurate approach to the correlation problem in density functional theory: The Krieger-Chen-Iafrate-Savin model,” J. Chem. Phys., 117 (2002) 10465-73.
Toyota02K. Toyota, M. Ehara, and H. Nakatsuji, “Elimination of singularities in molecular orbital derivatives: Minimum orbital-deformation (MOD) method,” Chem. Phys. Lett., 356 (2002) 1-6.
Toyota03K. Toyota, I. Mayumi, M. Ehara, M. J. Frisch, and H. Nakatsuji, “Singularity-free analytical energy gradients for the SAC/SAC-CI method: Coupled perturbed minimum orbital-deformation (CPMOD) approach,” Chem. Phys. Lett., 367 (2003) 730-36.
Trani11 Trani, F., Scalmani, G., Zheng, G.S., Carnimeo, I., Frisch, M.J., Barone, V., “Time-Dependent Density Functional Tight Binding: New Formulation and Benchmark of Excited States”,J. Chem. Theory Comput. 7 (2011) 3304-3313.
Trucks88G. W. Trucks, J. D. Watts, E. A. Salter, and R. J. Bartlett, “Analytical MBPT(4) Gradients,” Chem. Phys. Lett., 153 (1988) 490-95.
Trucks88aG. W. Trucks, E. A. Salter, C. Sosa, and R. J. Bartlett, “Theory and Implementation of the MBPT Density Matrix: An Application to One-Electron Properties,” Chem. Phys. Lett., 147 (1988) 359-66.
Truhlar70D. G. Truhlar, “Adiabatic theory of chemical reactions,” J. Chem. Phys., 53 (1970) 2041.
Truhlar71D. G. Truhlar and A. Kuppermann, “Exact tunneling calculations,” J. Am. Chem. Soc., 93 (1971) 1840.
Tubert-Brohman04I. Tubert-Brohman, C. R. W. Guimarães, M. P. Repasky, and W. L. Jorgensen, “Extension of the PDDG/PM3 and PDDG/MNDO Semiempirical Molecular Orbital Methods to the Halogens,” J. Comp. Chem., 25 (2004) 138-50.
Tubert-Brohman05I. Tubert-Brohman, C. R. W. Guimarães, and W. L. Jorgensen, “Extension of the PDDG/PM3 Semiempirical Molecular Orbit Method to Sulfur, Silicon, and Phosphorus,” J. Chem. Theory and Comput., 1 (2005) 817-23.
Uggerud92E. Uggerud and T. Helgaker, “Dynamics of the Reaction CH2OH+ → CHO+ + H2. Translational Energy-Release from ab initio Trajectory Calculations,” J. Am. Chem. Soc., 114 (1992) 4265-68.
VanCaillie00C. Van Caillie and R. D. Amos, “Geometric derivatives of density functional theory excitation energies using gradient-corrected functionals,” Chem. Phys. Lett., 317 (2000) 159-64.
VanCaillie99C. Van Caillie and R. D. Amos, “Geometric derivatives of excitation energies using SCF and DFT,” Chem. Phys. Lett., 308 (1999) 249-55.
VanVoorhis98T. Van Voorhis and G. E. Scuseria, “A never form for the exchange-correlation energy functional,” J. Chem. Phys., 109 (1998) 400-10.
Visscher97L. Visscher and K. G. Dyall, “Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions,” Atomic Data and Nuclear Data Tables, 67 (1997) 207-24.
vonNiessen84W. von Niessen, J. Schirmer, and L. S. Cederbaum, “Computational methods for the one-particle Green's function,” Comp. Phys. Rep., 1 (1984) 57-125.
Vosko80S. H. Vosko, L. Wilk, and M. Nusair, “Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis,” Can. J. Phys., 58 (1980) 1200-11.
Vreven00T. Vreven and K. Morokuma, “On the application of the IMOMO (Integrated Molecular Orbital + Molecular Orbital) method,” J. Comp. Chem., 21 (2000) 1419-32.
Vreven01T. Vreven, B. Mennucci, C. O. da Silva, K. Morokuma, and J. Tomasi, “The ONIOM-PCM method: Combining the hybrid molecular orbital method and the polarizable continuum model for solvation. Application to the geometry and properties of a merocyanine in solution,” J. Chem. Phys., 115 (2001) 62-72.
Vreven03T. Vreven, K. Morokuma, Ö. Farkas, H. B. Schlegel, and M. J. Frisch, “Geometry optimization with QM/MM, ONIOM and other combined methods. I. Microiterations and constraints,” J. Comp. Chem., 24 (2003) 760-69.
Vreven06T. Vreven, K. S. Byun, I. Komáromi, S. Dapprich, J. A. Montgomery Jr., K. Morokuma, and M. J. Frisch, “Combining quantum mechanics methods with molecular mechanics methods in ONIOM,” J. Chem. Theory and Comput., 2 (2006) 815-26.
Vreven06aT. Vreven, M. J. Frisch, K. N. Kudin, H. B. Schlegel, and K. Morokuma, “Geometry optimization with QM/MM Methods. II. Explicit Quadratic Coupling,” Mol. Phys., 104 (2006) 701-14.
Vreven06bT. Vreven and K. Morokuma, in Annual Reports in Computational Chemistry, Ed. D. C. Spellmeyer, Vol. 2 (Elsevier, 2006) 35 - 51.
Vreven08T. Vreven and K. Morokuma, in Continuum Solvation Models in Chemical Physics: From Theory to Applications , Ed. B. Mennucci and R. Cammi (Wiley, 2008).
Vreven97T. Vreven, F. Bernardi, M. Garavelli, M. Olivucci, M. A. Robb, and H. B. Schlegel, “Ab initio photoisomerization dynamics of a simple retinal chromophore model,” J. Am. Chem. Soc., 119 (1997) 12687-88.
Vydrov06O. A. Vydrov and G. E. Scuseria, “Assessment of a long range corrected hybrid functional,” J. Chem. Phys., 125 (2006) 234109.
Vydrov06aO. A. Vydrov, J. Heyd, A. Krukau, and G. E. Scuseria, “Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals,” J. Chem. Phys., 125 (2006) 074106.
Vydrov07O. A. Vydrov, G. E. Scuseria, and J. P. Perdew, “Tests of functionals for systems with fractional electron number,” J. Chem. Phys., 126 (2007) 154109.
Wachters70A. J. H. Wachters, “Gaussian basis set for molecular wavefunctions containing third-row atoms,” J. Chem. Phys., 52 (1970) 1033.
Wadt85W. R. Wadt and P. J. Hay, “Ab initio effective core potentials for molecular calculations - potentials for main group elements Na to Bi,” J. Chem. Phys., 82 (1985) 284-98.
Walker70T. E. H. Walker, “Molecular spin-orbit coupling constants. Role of core polarization,” J. Chem. Phys., 52 (1970) 1311.
Watts93J. D. Watts, J. Gauss, and R. J. Bartlett, “Coupled-cluster methods with noniterative triple excitations for restricted open-shell Hartree-Fock and other general single determinant reference functions. Energies and analytical gradients,” J. Chem. Phys., 98 (1993).
Weber03J. Weber and G. Hohlneicher, “Franck-Condon factors for polyatomic molecules,” Mol. Phys., 101 (2003) 2125-44.
Wedig86U. Wedig, M. Dolg, H. Stoll, and H. Preuss, in Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry, Ed. A. Veillard, Reidel, and Dordrecht (1986) 79.
Weigend03F. Weigend, F. Furche, and R. Ahlrichs, “Gaussian basis sets of quadruple zeta valence quality for atoms H-Kr,” J. Chem. Phys., 119 (2003) 12753-62.
Weigend05F. Weigend and R. Ahlrichs, “Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy,” Phys. Chem. Chem. Phys., 7 (2005) 3297-305.
Weigend06F. Weigend, “Accurate Coulomb-fitting basis sets for H to Rn,” Phys. Chem. Chem. Phys., 8 (2006) 1057-65.
Weinhold88F. Weinhold and J. E. Carpenter, in The Structure of Small Molecules and Ions, Ed. R. Naaman and Z. Vager (Plenum, 1988) 227-36.
Wiberg92K. B. Wiberg, C. M. Hadad, T. J. LePage, C. M. Breneman, and M. J. Frisch, “An Analysis of the Effect of Electron Correlation on Charge Density Distributions,” J. Phys. Chem., 96 (1992) 671-79.
Wilson01aP. J. Wilson, T. J. Bradley, and D. J. Tozer, “Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials,” J. Chem. Phys., 115 (2001) 9233-42.
Wilson05S. M. Wilson, K. B. Wiberg, J. R. Cheeseman, M. J. Frisch, and P. H. Vaccaro, “Nonresonant optical activity of isolated organic molecules,” J. Phys. Chem. A, 109 (2005) 11752-64.
Wilson96A. K. Wilson, T. van Mourik, and T. H. Dunning Jr., “Gaussian Basis Sets for use in Correlated Molecular Calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon,” J. Mol. Struct. (Theochem), 388 (1996) 339-49.
Wolinski80K. Wolinski and A. Sadlej, “Self-consistent perturbation theory: Open-shell states in perturbation-dependent non-orthogonal basis sets,” Mol. Phys., 41 (1980) 1419-30.
Wolinski90K. Wolinski, J. F. Hilton, and P. Pulay, “Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations,” J. Am. Chem. Soc., 112 (1990) 8251-60.
Wong91M. W. Wong, M. J. Frisch, and K. B. Wiberg, “Solvent Effects 1. The Mediation of Electrostatic Effects by Solvents,” J. Am. Chem. Soc., 113 (1991) 4776-82.
Wong91aM. W. Wong, K. B. Wiberg, and M. J. Frisch, “Hartree-Fock Second Derivatives and Electric Field Properties in a Solvent Reaction Field - Theory and Application,” J. Chem. Phys., 95 (1991) 8991-98.
Wong92M. W. Wong, K. B. Wiberg, and M. J. Frisch, “Solvent Effects 2. Medium Effect on the Structure, Energy, Charge Density, and Vibrational Frequencies of Sulfamic Acid,” J. Am. Chem. Soc., 114 (1992) 523-29.
Wong92aM. W. Wong, K. B. Wiberg, and M. J. Frisch, “Solvent Effects 3. Tautomeric Equilibria of Formamide and 2-Pyridone in the Gas Phase and Solution: An ab initio SCRF Study,” J. Am. Chem. Soc., 114 (1992) 1645-52.
Wood06G. P. F. Wood, L. Radom, G. A. Petersson, E. C. Barnes, M. J. Frisch, and J. A. Montgomery Jr. , “A restricted-open-shell complete-basis-set model chemistry,” J. Chem. Phys., 125 (2006) 094106: 1-16.
Woon93D. E. Woon and T. H. Dunning Jr., “Gaussian-basis sets for use in correlated molecular calculations. 3. The atoms aluminum through argon,” J. Chem. Phys., 98 (1993) 1358-71.
Xu04X. Xu and W. A. Goddard III, “The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties,” Proc. Natl. Acad. Sci. USA, 101 (2004) 2673-77.
Yamaguchi86Y. Yamaguchi, M. J. Frisch, J. Gaw, H. F. Schaefer III, and J. S. Binkley, “Analytic computation and basis set dependence of Intensities of Infrared Spectra,” J. Chem. Phys., 84 (1986) 2262-78.
Yamamoto96N. Yamamoto, T. Vreven, M. A. Robb, M. J. Frisch, and H. B. Schlegel, “A Direct Derivative MC-SCF Procedure,” Chem. Phys. Lett., 250 (1996) 373-78.
Yanai04T. Yanai, D. Tew, and N. Handy, “A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP),” Chem. Phys. Lett., 393 (2004) 51-57.
York99D. M. York and M. Karplus, “Smooth solvation potential based on the conductor-like screening model,” J. Phys. Chem. A, 103 (1999) 11060-79.
Zakrzewski93V. G. Zakrzewski and W. von Niessen, “Vectorizable algorithm for Green function and many-body perturbation methods,” J. Comp. Chem., 14 (1993) 13-18.
Zakrzewski94aV. G. Zakrzewski and J. V. Ortiz, “Semidirect algorithms in electron propagator calculations,” Int. J. Quantum Chem., Quant. Chem. Symp., S28 (1994) 23-27.
Zakrzewski95V. G. Zakrzewski and J. V. Ortiz, “Semidirect algorithms for third-order electron propagator calculations,” Int. J. Quantum Chem., 53 (1995) 583-90.
Zakrzewski96V. G. Zakrzewski, J. V. Ortiz, J. A. Nichols, D. Heryadi, D. L. Yeager, and J. T. Golab, “Comparison of perturbative and multiconfigurational electron propagator methods,” Int. J. Quant. Chem., 60 (1996) 29-36.
Zerner80M. C. Zerner, G. H. Lowe, R. F. Kirchner, and U. T. Mueller-Westerhoff, “An Intermediate Neglect of Differential Overlap Technique for Spectroscopy of Transition-Metal Complexes. Ferrocene,” J. Am. Chem. Soc., 102 (1980) 589-99.
Zerner82M. C. Zerner, P. Correa de Mello, and M. Hehenberger, “Converging SCF Calculations on Excited States,” Int. J. Quantum Chem., 21 (1982) 251-59.
Zerner91M. C. Zerner, in Reviews of Computational Chemistry, Ed. K. B. Lipkowitz and D. B. Boyd, Vol. 2 (VCH Publishing, New York, 1991) 313-66.
Zhao05 Y. Zhao, N. E. Schultz, and D. G. Truhlar, “Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions,” J. Chem. Phys., 123 (2005) 161103.
Zhao06Y. Zhao, N. E. Schultz, and D. G. Truhlar, “Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions,” J. Chem. Theory and Comput., 2 (2006) 364-82.
Zhao06aY. Zhao and D. G. Truhlar, “A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions,” J. Chem. Phys., 125 (2006), 194101: 1-18.
Zhao06bY. Zhao and D. G. Truhlar, “Comparative DFT study of van der Waals complexes: Rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers,” J. Phys. Chem., 110 (2006) 5121-29.
Zhao06cY. Zhao and D. G. Truhlar, “Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States,” J. Phys. Chem. A, 110 (2006) 13126-30.
Zhao08Y. Zhao and D. G. Truhlar, “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals,” Theor. Chem. Acc., 120 (2008) 215-41.
Zheng05G. Zheng, S. Irle, and K. Morokuma, “Performance of the DFTB method in comparison to DFT and semiempirical methods for geometries and energies of C20-C86 fullerene isomers,” Chem. Phys. Lett., 412 (2005) 210-16.
Zheng07G. Zheng, H. Witek, P. Bobadova-Parvanova, S. Irle, D. G. Musaev, R. Prabhakar, K. Morokuma, M. Lundberg, M. Elstner, C. Kohler, and T. Frauenheim, “Parameter calibration of transition-metal elements for the spin-polarized self-consistent-charge density-functional tight-binding (DFTB) method: Sc, Ti, Fe, Co and Ni,” J. Chem. Theory and Comput., 3 (2007) 1349-67.
Zhixing89C. Zhixing, “Rotation procedure in intrinsic reaction coordinate calculations,” Theor. Chim. Acta., 75 (1989) 481-84.